Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Z. Gagnon and H. -C. Chang, Electrophoresis 26, 3725 (2005).
2.M. Suzuki, T. Yasukawa, Y. Mase, D. Oyamatsu, H. Shiku, and T. Matsue, Langmuir 20, 11005 (2004).
3.T. Bellini, F. Mantegazza, V. Degiorgio, R. Avallone, and D. A. Saville, Phys. Rev. Lett. 82, 5160 (1999).
4.H. A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978).
5.S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991).
6.S. Tsukahara, T. Sakamoto, and H. Watarai, Langmuir 16, 3866 (2000).
7.S. Basuray and H. -C. Chang, Phys. Rev. E 75, 060501 (2007).
8.E. Brunet and A. Ajdari, Phys. Rev. E 73, 056306 (2006).
9.N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, Phys. Rev. E 66, 026305 (2002);
9.N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, Phys. Rev. E 61, 4011 (2000);
9.A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, Phys. Rev. E 61, 4019 (2000).
10.M. Z. Bazant and T. M. Squires, Phys. Rev. Lett. 92, 066101 (2004).
11.Y. Ben and H. -C. Chang, J. Fluid Mech. 461, 229 (2002);
11.Y. X. Ben, E. A. Demekhin, and H. -C. Chang, J. Colloid Interface Sci. 276, 483 (2004).
12.C. T. O’Konski, J. Phys. Chem. 64, 605 (1960).
13.D. Stein, M. Kruithof, and C. Dekker, Phys. Rev. Lett. 93, 035901 (2004).
14.F. C. Leinweber and U. Tallarek, J. Phys. Chem. B 109, 21481 (2005);
14.U. Tallarek, F. C. Leinweber, and I. Nischang, Electrophoresis 26, 391 (2005).
15.Y. -C. Wang, A. L. Stevens, and J. Y. Han, Anal. Chem. 77, 4293 (2005).
16.H. -C. Chang, AIChE J. 53, 2486 (2007);
16.D. Hou, S. Maheshwari, and H. -C. Chang, Biomicrofluidics 1, 014106 (2007);
16.I. -F. Cheng, H. -C. Chang, D. Hou, and H. -C. Chang, Biomicrofluidics 1, 021503 (2007).
17.Laboratory Chemicals and Analytical Reagents (Fluka/Riedel–de Haën Catalogue, Switzerland, 2007/2008), p. 1214.

Data & Media loading...


Article metrics loading...



A transient -fold concentration of double-layer counterions by a high-intensity electric field is demonstrated at the exit pole of a millimeter-sized conducting nanoporous granule that permits ion permeation. The phenomenon is attributed to a unique counterion screening dynamics that transforms half of the surface field into a converging one toward the ejecting pole. The resulting surface conduction flux then funnels a large upstream electro-osmotic convective counterion flux into the injecting hemisphere toward the zero-dimensional gate of the ejecting hemisphere to produce the superconcentration. As the concentrated counterion is ejected into the electroneutral bulk electrolyte, it attracts co-ions and produce a corresponding concentration of the co-ions. This mechanism is also shown to trap and concentrate co-ion microcolloids of micron sizes too (macroions) and hence has potential application in bead-based molecular assays.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd