Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. A. Pohl, Dielectrophoresis—The Behaviour of Neutral Matter in Nonuniform Electric Field (Cambridge University Press, Cambridge, 1978).
2.T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995).
3.E. B. Cummings and A. K. Singh, Anal. Chem. 75, 4724 (2003).
4.A. Ajdari and J. Prost, Proc. Natl. Acad. Sci. U.S.A. 88, 4468 (1991).
5.C.-F. Chou, J. O. Tegenfeldt, O. Bakajin, S. Y. Chan, E. C. Cox, D. T. Darnton, and R. H. Austin, Biophys. J. 83, 2170 (2002).
6.J. Regtmeier, T. T. Duong, R. Eichhorn, D. Anselmetti, and A. Ros, Anal. Chem. 79, 3925 (2007).
7.J. C. Eijkel and A. van den Berg, Lab Chip 6, 19 (2006).
8.K. H. Kang, X. Xuan, Y. Kang, and D. Li, J. Appl. Phys. 99, 064702 (2006).
9.Y. Kang, D. Li, S. A. Kalams, and J. E. Eid, Biomed. Microdevices 10, 243 (2007).–9130-y
10.V. G. Kutchoukov, F. Laugere, W. van der Vlist, L. Pakula, Y. Garini, and A. Bossche, Sens. Actuators, A 114, 521 (2004).
11.Y. C. Chan, Y. Zohar, and Y.-K Lee, Proceedings of MEMS 2006, 19th IEEE Conference on Micro Electrical Mechanical Systems, Istanbul, 2006 (unpublished), pp. 438–441.
12.G. O. F. Parikesit, A. P. Markesteijn, V. G. Kutchoukov, V. G. Piciu, A. Bossche, J. Westerweel, Y. Garini, and I. T. Young, Lab Chip 5, 1067 (2005).
13.L. C. L.uengo, L. J. van Vliet, B. Rieger, and M. van Ginkel, “DIPimage: A scientific image processing toolbox for Matlab,” Delft University of Technology, 1999,
14.I. T. Young, J. J. Gerbrands, and L. J. van Vliet, The Digital Signal Processing Handbook (CRC Press, Boca Raton, 1998), Chap. 51.
15.Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, Lab Chip 4, 372 (2004).
16.D. Porschke, Biophys. Chem. 66, 241 (1997).
17.D. J. Bakewell, I. Ermolina, H. Morgan, J. Milner, and Y. Feldman, Biochim. Biophys. Acta 1493, 151 (2000).–4781(00)00176-7
18.J. -L. Viovy, Rev. Mod. Phys. 72, 813 (2000).
19.S. Pennathur and J. G. Santiago, Anal. Chem. 77, 6782 (2005).
20.S. Pennathur, F. Baldessari, and J. G. Santiago, Anal. Chem. 79, 8316 (2007).
21.F. Baldessari and J. G. Santiago, J. Nanobiotechnol. 4, 12 (2006).
22.W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, Phys. Rev. Lett. 94, 196101 (2005).
23.G. Salieb-Beugelaar, J. Teapal, J. van Nieuwkasteele, D. Wijnperle, J. O. Tegenfeldt, J. C. T. Eijkel, and A. van den Berg, “DNA movement in sub-20 nm nanoslits,” Proceedings of the Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), Paris, 2007 (unpublished), pp. 1201–1203.
24.M. Yamada and M. Seki, Anal. Chem. 78, 1357 (2006).
25.M. Krishnan, I. Moench, and P. Schwille, Nano Lett. 7, 1270 (2007).
26.G. O. F. Parikesit, A. P. Markesteijn, J. Westerweel, I. T. Young, and Y. Garini, “Free-Flow Dielectrophoresis—A Numerical Study,” Proceedings of the Eleventh International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), Paris, 2007 (unpublished).

Data & Media loading...


Article metrics loading...



In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of . Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNAdielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as .


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd