1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/2/2/10.1063/1.2943732
1.
1.F. Vollrath and D. P. Knight, Nature (London) 410, 541 (2001).
http://dx.doi.org/10.1038/35069000
2.
2.T. Asakura, K. Umemura, Y. Nakazawa, H. Hirose, J. Higham, and D. Knight, Biomacromolecules 8, 175 (2007).
http://dx.doi.org/10.1021/bm060874z
3.
3.J. Magoshi, Y. Magoshi, and S. Nakamura, in Silk Polymers: Materials Science and Biotechnology, ACS Symposium Series No. 544, edited by D. Kaplan, W. W. Adams, B. Farmer, and C. Viney (American Chemical Society, Washington, 1994), pp. 292–310.
4.
4.G. Li, P. Zhou, Z. Shao, X. Xie, X. Chen, H. Wang, L. Chunyu, and T. Yu, Eur. J. Biochem. 268, 6600 (2001).
http://dx.doi.org/10.1046/j.0014-2956.2001.02614.x
5.
5.H. J. Jin and D. L. Kaplan, Nature (London) 424, 1057 (2003).
http://dx.doi.org/10.1038/nature01809
6.
6.C. Riekel and F. Vollrath, Int. J. Biol. Macromol. 29, 203 (2001).
http://dx.doi.org/10.1016/S0141-8130(01)00166-0
7.
7.F. Vollrath, D. P. Knight, and X. W. Hu, Proc. R. Soc. London, Ser. B 265, 817 (1998).
http://dx.doi.org/10.1098/rspb.1998.0365
8.
8.A. E. Terry, D. P. Knight, D. Porter, and F. Vollrath, Biomacromolecules 5, 768 (2004).
http://dx.doi.org/10.1021/bm034381v
9.
9.X. Chen, D. P. Knight, Z. Shao, and F. Vollrath, Biochemistry 41, 14944 (2002).
http://dx.doi.org/10.1021/bi026550m
10.
10.X. Peng, Z. Shao, X. Chen, D. P. Knight, P. Wu, and F. Vollrath, Biomacromolecules 6, 302 (2005).
http://dx.doi.org/10.1021/bm049598j
11.
11.X. H. Zong, P. Zhou, Z. Z. Shao, S. M. Chen, X. Chen, B. W. Hu, F. Deng, and W. H. Yao, Biochemistry 43, 11932 (2004).
http://dx.doi.org/10.1021/bi049455h
12.
12.E. Iizuka, J. Appl. Polym. Sci.: Appl. Polym. Symp. 41, 173 (1985).
13.
13.D. P. Knight, M. M. Knight, and F. Vollrath, Int. J. Biol. Macromol. 27, 205 (2000).
http://dx.doi.org/10.1016/S0141-8130(00)00124-0
14.
14.J. Magoshi, Y. Magoshi, and S. Nakamura, J. Appl. Polym. Sci.: Appl. Polym. Symp. 41, 187 (1985).
15.
15.C. Viney, Supramol. Sci. 4, 75 (1997).
http://dx.doi.org/10.1016/S0968-5677(96)00059-4
16.
16.M. Rössle, P. Panine, V. S. Urban, and C. Riekel, Biopolymers 74, 316 (2004).
http://dx.doi.org/10.1002/bip.20083
17.
17.O. Liivak, A. Blye, N. Shah, and L. W. Jelinski, Macromolecules 31, 2947 (1998).
http://dx.doi.org/10.1021/ma971626l
18.
18.T. Scheibel, D. Huemmerich, S. Remmensee, C. Freudiger, and A. Bausch (Technische Universitaet Muenchen, Germany, 2007), Microfluidic Device for Controlled Aggregation of Spider Silk, International Patent No. WO 2007/141131 A1 (2007).
19.
19.A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Science 308, 537 (2005).
http://dx.doi.org/10.1126/science.1109164
20.
20.F. Destremaut, C. Masselon, P. Laval, G. Cristobal, A. Dodge, J. B. Salmon, and R. Barrett, La Houille Blanche: Revue Internationale de l’ eau 6, 26 (2007).
http://dx.doi.org/10.1051/lhb:2007078
21.
21.J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin, Phys. Rev. Lett. 80, 3863 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3863
22.
22.T. Pfohl, F. Mugele, R. Seemann, and S. Herminghaus, ChemPhysChem 4, 1291 (2003).
http://dx.doi.org/10.1002/cphc.200300847
23.
23.P. Panine, M. Gradzielski, and T. Narayanan, Rev. Sci. Instrum. 74, 2451 (2003).
http://dx.doi.org/10.1063/1.1556943
24.
24.J. C. Labiche, O. Mathon, S. Pascarelli, M. A. Newton, G. G. Ferre, C. Curfs, G. Vaughan, and A. Homs, Rev. Sci. Instrum. 78, 091301 (2007).
http://dx.doi.org/10.1063/1.2783112
25.
25.R. Gebhardt, M. Hanfland, M. Mezouar, and C. Riekel, Biomacromolecules 8, 2092 (2007).
http://dx.doi.org/10.1021/bm070156s
26.
26.A. Guinier and G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955).
27.
27.M. Canetti, A. Seves, F. Secundo, and G. Vecchio, Biopolymers 28, 1613 (1989).
http://dx.doi.org/10.1002/bip.360280910
28.
28.A. Martel, M. Burghammer, R. J. Davies, and C. Riekel, Biomacromolecules 8, 3548 (2007).
http://dx.doi.org/10.1021/bm700935w
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/2/10.1063/1.2943732
Loading
/content/aip/journal/bmf/2/2/10.1063/1.2943732
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/2/2/10.1063/1.2943732
2008-06-06
2014-09-21

Abstract

A tube-in-square-pipe microfluidic glass cell has been developed for studying the aggregation and fiber formation from regenerated silksolution by in-situ small-angle X-ray scattering using synchrotron radiation. Acidification-induced aggregation has been observed close to the mixing point of the fibroin and buffer solution. The fibrous, amorphous material is collected in a water bath. Micro-wide-angle X-ray scattering of the dried material confirms its -sheet nature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/2/2/1.2943732.html;jsessionid=1m32bqp0565tb.x-aip-live-03?itemId=/content/aip/journal/bmf/2/2/10.1063/1.2943732&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small- and wide-angle X-ray scattering
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/2/10.1063/1.2943732
10.1063/1.2943732
SEARCH_EXPAND_ITEM