1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/2/2/10.1063/1.2952290
1.
1.S. V. Boyden, J. Exp. Med. 115, 453 (1962).
http://dx.doi.org/10.1084/jem.115.3.453
2.
2.J. Adler, Science 166, 1588 (1969).
http://dx.doi.org/10.1126/science.166.3913.1588
3.
3.R. D. Nelson, P. G. Quie, and R. L. Simmons, J. Immunol. 115, 1650 (1975).
4.
4.S. H. Zigmond, J. Cell Biol. 75, 606 (1977).
http://dx.doi.org/10.1083/jcb.75.2.606
5.
5.A. F. Brown, J. Cell Sci. 58, 455 (1982).
6.
6.S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Anal. Chem. 73, 1240 (2001).
http://dx.doi.org/10.1021/ac001132d
7.
7.N. L. Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. V. D. Water, and M. Toner, Nat. Biotechnol. 20, 826 (2002).
http://dx.doi.org/10.1038/nbt712
8.
8.H. Wu, B. Huang, and R. N. Zare, J. Am. Chem. Soc. 128, 4194 (2006).
http://dx.doi.org/10.1021/ja058530o
9.
9.G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo, Lab Chip 5, 611 (2005).
http://dx.doi.org/10.1039/b417245k
10.
10.M. Yang, J. Yang, C. -W. Lia, and J. Zhaob, Lab Chip 2, 158 (2002).
http://dx.doi.org/10.1039/b201021f
11.
11.V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, Lab Chip 6, 389 (2006).
http://dx.doi.org/10.1039/b514133h
12.
12.J. Diao, L. Young, S. Kim, E. A. Fogarty, S. M. Heilman, P. Zhou, M. L. Shuler, M. Wu, and M. P. DeLisa, Lab Chip 6, 381 (2006).
http://dx.doi.org/10.1039/b511958h
13.
13.C. W. Frevert, G. Boggy, T. M. Keenan, and A. Folch, Lab Chip 6, 849 (2006).
http://dx.doi.org/10.1039/b806769b
14.
14.B. G. Chung, F. Lin, and N. L. Jeon, Lab Chip 6, 764 (2006).
http://dx.doi.org/10.1039/b512667c
15.
15.C. Ince, R. E. Beekman, and G. Verschragen, J. Immunol. Methods 128, 227 (1990).
http://dx.doi.org/10.1016/0022-1759(90)90214-G
16.
16.S. Hediger, J. Fontannaz, A. Sayah, W. Hunziker, and M. A. M. Gijs, Sens. Actuators B 63, 63 (2000).
http://dx.doi.org/10.1016/S0925-4005(02)00148-X
17.
17.A. W. Blau and C. M. Ziegler, J. Biochem. Biophys. Methods 50, 15 (2001).
http://dx.doi.org/10.1016/S0165-022X(01)00163-4
18.
18.E. W. H. Jager, C. Immerstrand, K. H. Peterson, K. -E. Magnusson, I. Lundström, and O. Inganäs, Biomed. Microdevices 4, 177 (2002).
http://dx.doi.org/10.1023/A:1016092228965
19.
19.H. Moriguchi, Y. Wakamoto, Y. Sugio, K. Takahashi, I. Inoue, and K. Yasuda, Lab Chip 2, 125 (2002).
http://dx.doi.org/10.1039/b202569h
20.
20.R. Davidsson, A. Boketoft, J. Bristulf, K. Kotarsky, B. Olde, C. Owman, M. Bengtsson, T. Laurell, and J. Emneus, Anal. Chem. 76, 4715 (2004).
http://dx.doi.org/10.1021/ac035249o
21.
21.K. Kojima, T. Kaneko, and K. Yasuda, J. Nanobiotechnol. 2, 9 (2004).
http://dx.doi.org/10.1186/1477-3155-2-9
22.
22.A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, and F. Baudenbacher, Biomed. Microdevices 6, 325 (2004).
http://dx.doi.org/10.1023/B:BMMD.0000048564.37800.d6
23.
23.G. S. Fiorini and D. T. Chiu, Biotechniques 38, 429 (2005).
24.
24.C. L. Ho, T. Y. Mou, P. S. Chiang, C. L. Weng, and N. H. Chow, Biotechniques 38, 267 (2005).
25.
25.A. Tourovskaia, X. Figueroa-Masot, and A. Folch, Lab Chip 5, 14 (2005).
http://dx.doi.org/10.1039/b405719h
26.
26.S. Petronis, M. Stangegaard, C. B. V. Christensen, and M. Dufva, Biotechniques 40, 368 (2006).
http://dx.doi.org/10.2144/000112122
27.
27.J. Y. Cheng, C. W. Wei, K. H. Hsu, and T. H. Young, Sens. Actuators B 99, 186 (2004).
http://dx.doi.org/10.1016/j.snb.2003.10.022
28.
28.J. Y. Cheng, M. H. Yen, C. W. Wei, Y. C. Cheang, and T. H. Young, J. Micromech. Microeng. 15, 1147 (2005).
http://dx.doi.org/10.1088/0960-1317/15/6/005
29.
29.J. -Y. Cheng, M. -H. Yen, W. -C. Hsu, J. -H. Jhang, and T. -H. Young, J. Micromech. Microeng. 17, 2316 (2007).
http://dx.doi.org/10.1088/0960-1317/17/11/019
30.
30.J. -Y. Cheng, M. -H. Yen, W. -C. Hsu, and T. -H. Young, in The 8th International Symposium on Laser Precision Microfabrication, LPM2007, Vienna, Austria 2007 (2007).
31.
31.J. -Y. Cheng, C. -J. Hsieh, and Y. -C. Chuang, Analyst (Cambridge, U.K.) 130, 931 (2005).
http://dx.doi.org/10.1039/b501061f
32.
32.J. Y. Shih, S. C. Yang, T. M. Hong, A. Yuan, J. J. W. Chen, C. J. Yu, Y. L. Chang, Y. C. Lee, K. Peck, C. W. Wu, and P. C. Yang, J. Natl. Cancer Inst. 93, 1392 (2001).
http://dx.doi.org/10.1093/jnci/93.18.1392
33.
33.H. S. Hele-Shaw, Nature (London) 58, 34 (1898).
http://dx.doi.org/10.1038/058034a0
34.
34.P. Gondret, N. Rakotomalala, M. Rabaud, D. Salin, and P. Watzky, Phys. Fluids 9, 1841 (1997).
http://dx.doi.org/10.1063/1.869301
35.
35.D. P. Gaver III and S. M. Kute, Biophys. J. 75, 721 (1998).
36.
36.G. Cinamon and R. Alon, J. Immunol. Methods 273, 53 (2003).
http://dx.doi.org/10.1016/S0022-1759(02)00418-0
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/2/10.1063/1.2952290
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Configuration drawing of the transparent cell-culturing device. (a) Shows the cross-sectional top view, front view, and side view around the culture region. In the front view the cross section of the gate structure is shown. The arrangement of the upstream/downstream gate and the culture region is in the top view. In the side view the medium flow path and the effusion hole is shown. (b) The whole view of the entire device.

Image of FIG. 2.

Click to view

FIG. 2.

Flow simulation of the gated flow chamber at equilibrium. (a) Flow in the chamber with gates and velocity distribution in transversal (A-A’ (b)); longitudinal (B-B’ (c)) directions. The flow rate at the inlet is . Due to the gated design, the velocity profile inside the culture chamber is uniform over 90% of the culture area. The velocity was calculated at above the hole-side and cover-side surface .

Image of FIG. 3.

Click to view

FIG. 3.

Simulation of the medium replacement. (a) Start of the replacement, . (b) Replacement progression at . (c) Complete replacement at . Medium flow rate is from left to right. (d) Video showing the simulated medium replacement (enhanced online). [URL: http://dx.doi.org/10.1063/1.2952290.1]10.1063/1.2952290.1

Image of FIG. 4.

Click to view

FIG. 4.

Experimental result of the medium replacement. (a) Start of the replacement, . (b) Replacement progression at and (c) . (d) Complete replacement at . The medium flow is from left to right. (e) Video showing the experimental medium replacement (enhanced online). [URL: http://dx.doi.org/10.1063/1.2952290.2]10.1063/1.2952290.2

Image of FIG. 5.

Click to view

FIG. 5.

Simulation of chemical diffusion in a pre-established flow field. The chemical effuses from the central effusion hole at the bottom of the cell-culture chamber at rate of . (a) Start of the effusion, . (b) Gradient build-up progression at . (c) Steady gradient at . Medium flow is from left to right. (d) is the transversal gradient generated in (c). Wide segments denote the near-linear region. The “” denotes the downstream distance from the effusion hole. (e) Video showing the animated simulation of the gradient progression (enhanced online). [URL: http://dx.doi.org/10.1063/1.2952290.3]10.1063/1.2952290.3

Image of FIG. 6.

Click to view

FIG. 6.

(a) Simulated flow velocity profile in transversal direction along the A-A’ line in Fig. 5(a). The and directions are as depicted in Fig. 5(a). (b) A plot showing that flow field variation is below 10% at 5 mm downstream away from the effusion hole . The flow speed variation is large near the effusion hole and stabilizes gradually as distance from the hole increases.

Image of FIG. 7.

Click to view

FIG. 7.

Experimental result of chemical gradient progression. (a) . (b) . (c) . The lateral medium flow is from left to right. Dye effusion from the inlet is . (d)–(f) Gradient with a larger medium flow of , showing a narrower dye distribution. (g)–(i) Gradient with a lateral medium flow.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Temperature distribution in the cell-culture region recorded by an IR thermal imager. Steady medium flow is pumped through the culture chamber. Temperature homogeneity is kept to be within in an area of . (b) Long-term temperature stability of the culture chamber.

Image of FIG. 9.

Click to view

FIG. 9.

Image of lung cancer cells, CL1-5, cultured in the microfluidic device after 122 h. The medium flow rate is . The chamber temperature is kept at . The inset shows the region where the image was taken.

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
The following multimedia file is available:
The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/bmf/2/2/10.1063/1.2952290
2008-06-17
2014-04-18

Abstract

Real-time observation of cell growth provides essential information for studies such as cell migration and chemotaxis. A conventional cell incubation device is usually too clumsy for these applications. Here we report a transparent microfluidic device that has an integrated heater and a concentration gradient generator. A piece of indium tin oxide (ITO) coated glass was ablated by our newly developed visible laser-induced backside wet etching (LIBWE) so that transparent heater strips were prepared on the glass substrate. A polymethylmethacrylate (PMMA) microfluidic chamber with flow field rectifiers and a reagent effusion hole was fabricated by a laser and then assembled with the ITO heater so that the chamber temperature can be controlled for cell culturing. A variable chemical gradient was generated inside the chamber by combining the lateral medium flow and the flow from the effusion hole. Successful culturing was performed inside the device. Continuous long-term observation on cell growth was achieved. In this work the flow field, medium replacement, and chemical gradient in the microchamber are elaborated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/2/2/1.2952290.html;jsessionid=1n6j861tjafmf.x-aip-live-06?itemId=/content/aip/journal/bmf/2/2/10.1063/1.2952290&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/2/10.1063/1.2952290
10.1063/1.2952290
SEARCH_EXPAND_ITEM