1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/2/2/10.1063/1.2952290
1.
1.S. V. Boyden, J. Exp. Med. 115, 453 (1962).
http://dx.doi.org/10.1084/jem.115.3.453
2.
2.J. Adler, Science 166, 1588 (1969).
http://dx.doi.org/10.1126/science.166.3913.1588
3.
3.R. D. Nelson, P. G. Quie, and R. L. Simmons, J. Immunol. 115, 1650 (1975).
4.
4.S. H. Zigmond, J. Cell Biol. 75, 606 (1977).
http://dx.doi.org/10.1083/jcb.75.2.606
5.
5.A. F. Brown, J. Cell Sci. 58, 455 (1982).
6.
6.S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Anal. Chem. 73, 1240 (2001).
http://dx.doi.org/10.1021/ac001132d
7.
7.N. L. Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. V. D. Water, and M. Toner, Nat. Biotechnol. 20, 826 (2002).
http://dx.doi.org/10.1038/nbt712
8.
8.H. Wu, B. Huang, and R. N. Zare, J. Am. Chem. Soc. 128, 4194 (2006).
http://dx.doi.org/10.1021/ja058530o
9.
9.G. M. Walker, J. Sai, A. Richmond, M. Stremler, C. Y. Chung, and J. P. Wikswo, Lab Chip 5, 611 (2005).
http://dx.doi.org/10.1039/b417245k
10.
10.M. Yang, J. Yang, C. -W. Lia, and J. Zhaob, Lab Chip 2, 158 (2002).
http://dx.doi.org/10.1039/b201021f
11.
11.V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, Lab Chip 6, 389 (2006).
http://dx.doi.org/10.1039/b514133h
12.
12.J. Diao, L. Young, S. Kim, E. A. Fogarty, S. M. Heilman, P. Zhou, M. L. Shuler, M. Wu, and M. P. DeLisa, Lab Chip 6, 381 (2006).
http://dx.doi.org/10.1039/b511958h
13.
13.C. W. Frevert, G. Boggy, T. M. Keenan, and A. Folch, Lab Chip 6, 849 (2006).
http://dx.doi.org/10.1039/b806769b
14.
14.B. G. Chung, F. Lin, and N. L. Jeon, Lab Chip 6, 764 (2006).
http://dx.doi.org/10.1039/b512667c
15.
15.C. Ince, R. E. Beekman, and G. Verschragen, J. Immunol. Methods 128, 227 (1990).
http://dx.doi.org/10.1016/0022-1759(90)90214-G
16.
16.S. Hediger, J. Fontannaz, A. Sayah, W. Hunziker, and M. A. M. Gijs, Sens. Actuators B 63, 63 (2000).
http://dx.doi.org/10.1016/S0925-4005(02)00148-X
17.
17.A. W. Blau and C. M. Ziegler, J. Biochem. Biophys. Methods 50, 15 (2001).
http://dx.doi.org/10.1016/S0165-022X(01)00163-4
18.
18.E. W. H. Jager, C. Immerstrand, K. H. Peterson, K. -E. Magnusson, I. Lundström, and O. Inganäs, Biomed. Microdevices 4, 177 (2002).
http://dx.doi.org/10.1023/A:1016092228965
19.
19.H. Moriguchi, Y. Wakamoto, Y. Sugio, K. Takahashi, I. Inoue, and K. Yasuda, Lab Chip 2, 125 (2002).
http://dx.doi.org/10.1039/b202569h
20.
20.R. Davidsson, A. Boketoft, J. Bristulf, K. Kotarsky, B. Olde, C. Owman, M. Bengtsson, T. Laurell, and J. Emneus, Anal. Chem. 76, 4715 (2004).
http://dx.doi.org/10.1021/ac035249o
21.
21.K. Kojima, T. Kaneko, and K. Yasuda, J. Nanobiotechnol. 2, 9 (2004).
http://dx.doi.org/10.1186/1477-3155-2-9
22.
22.A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, and F. Baudenbacher, Biomed. Microdevices 6, 325 (2004).
http://dx.doi.org/10.1023/B:BMMD.0000048564.37800.d6
23.
23.G. S. Fiorini and D. T. Chiu, Biotechniques 38, 429 (2005).
24.
24.C. L. Ho, T. Y. Mou, P. S. Chiang, C. L. Weng, and N. H. Chow, Biotechniques 38, 267 (2005).
25.
25.A. Tourovskaia, X. Figueroa-Masot, and A. Folch, Lab Chip 5, 14 (2005).
http://dx.doi.org/10.1039/b405719h
26.
26.S. Petronis, M. Stangegaard, C. B. V. Christensen, and M. Dufva, Biotechniques 40, 368 (2006).
http://dx.doi.org/10.2144/000112122
27.
27.J. Y. Cheng, C. W. Wei, K. H. Hsu, and T. H. Young, Sens. Actuators B 99, 186 (2004).
http://dx.doi.org/10.1016/j.snb.2003.10.022
28.
28.J. Y. Cheng, M. H. Yen, C. W. Wei, Y. C. Cheang, and T. H. Young, J. Micromech. Microeng. 15, 1147 (2005).
http://dx.doi.org/10.1088/0960-1317/15/6/005
29.
29.J. -Y. Cheng, M. -H. Yen, W. -C. Hsu, J. -H. Jhang, and T. -H. Young, J. Micromech. Microeng. 17, 2316 (2007).
http://dx.doi.org/10.1088/0960-1317/17/11/019
30.
30.J. -Y. Cheng, M. -H. Yen, W. -C. Hsu, and T. -H. Young, in The 8th International Symposium on Laser Precision Microfabrication, LPM2007, Vienna, Austria 2007 (2007).
31.
31.J. -Y. Cheng, C. -J. Hsieh, and Y. -C. Chuang, Analyst (Cambridge, U.K.) 130, 931 (2005).
http://dx.doi.org/10.1039/b501061f
32.
32.J. Y. Shih, S. C. Yang, T. M. Hong, A. Yuan, J. J. W. Chen, C. J. Yu, Y. L. Chang, Y. C. Lee, K. Peck, C. W. Wu, and P. C. Yang, J. Natl. Cancer Inst. 93, 1392 (2001).
http://dx.doi.org/10.1093/jnci/93.18.1392
33.
33.H. S. Hele-Shaw, Nature (London) 58, 34 (1898).
http://dx.doi.org/10.1038/058034a0
34.
34.P. Gondret, N. Rakotomalala, M. Rabaud, D. Salin, and P. Watzky, Phys. Fluids 9, 1841 (1997).
http://dx.doi.org/10.1063/1.869301
35.
35.D. P. Gaver III and S. M. Kute, Biophys. J. 75, 721 (1998).
36.
36.G. Cinamon and R. Alon, J. Immunol. Methods 273, 53 (2003).
http://dx.doi.org/10.1016/S0022-1759(02)00418-0
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/2/10.1063/1.2952290
Loading
/content/aip/journal/bmf/2/2/10.1063/1.2952290
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/2/2/10.1063/1.2952290
2008-06-17
2014-07-25

Abstract

Real-time observation of cell growth provides essential information for studies such as cell migration and chemotaxis. A conventional cell incubation device is usually too clumsy for these applications. Here we report a transparent microfluidic device that has an integrated heater and a concentration gradient generator. A piece of indium tin oxide (ITO) coated glass was ablated by our newly developed visible laser-induced backside wet etching (LIBWE) so that transparent heater strips were prepared on the glass substrate. A polymethylmethacrylate (PMMA) microfluidic chamber with flow field rectifiers and a reagent effusion hole was fabricated by a laser and then assembled with the ITO heater so that the chamber temperature can be controlled for cell culturing. A variable chemical gradient was generated inside the chamber by combining the lateral medium flow and the flow from the effusion hole. Successful culturing was performed inside the device. Continuous long-term observation on cell growth was achieved. In this work the flow field, medium replacement, and chemical gradient in the microchamber are elaborated.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/2/2/1.2952290.html;jsessionid=1jluenb19w1t9.x-aip-live-06?itemId=/content/aip/journal/bmf/2/2/10.1063/1.2952290&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/2/10.1063/1.2952290
10.1063/1.2952290
SEARCH_EXPAND_ITEM