Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. M. Whitesides, Nature (London) 442, 368 (2006).
2.C. L. Hansen, E. Skordalakes, J. M. Berger, and S. R. Quake, Proc. Natl. Acad. Sci. U.S.A. 99, 16531 (2002).
3.B. Zheng, L. S. Roach, and R. F. Ismagilov, J. Am. Chem. Soc. 125, 11170 (2003).
4.B. Zheng, J. D. Tice, L. S. Roach, and R. F. Ismagilov, Angew. Chem., Int. Ed. 43, 2508 (2004).
5.Jamil El-Ali, P. K. Sorger, and K. F. Jensen, Nature (London) 442, 403 (2006).
6.C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Science 276, 1425 (1997).
7.M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen, J.-B. Sibarita, and M. Bornens, Nat. Cell Biol. 7, 947 (2005).
8.X. Hu, P. H. Bessette, J. Qian, C. D. Meinhart, P. S. Daugherty, and H. T. Soh, Proc. Natl. Acad. Sci. U.S.A. 102, 15757 (2005).
9.C. Zhang, J. Xu, W. Ma, and W. Zheng, Biotechnol. Adv. 24, 243 (2006).
10.Y. S. Shin, K. Cho, S. H. Lim, S. Chung, S. J. Park, C. Chung, D. C. Han, and J. K. Chang, J. Micromech. Microeng. 13, 769 (2003).
11.S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, Science 251, 767 (1991).
12.G. MacBeath and S. L. Schreiber, Science 289, 1760 (2000).
13.S. J. Taylor and J. P. Morken, Science 280, 267 (1998).
14.E. Reddington, A. Sapienza, B. Guaru, R. Viswanathan, S. Sarangapani, E. S. Smotkin, and T. E. Mallouk, Science 280, 1735 (1998).
15.D. S. Rhoads, S. M. Nadkarni, L. Song, C. Voeltz, E. Bodenschatz, and J.-L. Guan, Methods Mol. Biol. 294, 347 (2005).
16.H. Lu, L. Y. Koo, W. M. Wang, D. A. Lauffenburger, L. G. Griffith, and K. F. Jensen, Anal. Chem. 76, 5257 (2004).
17.T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey, Cell Motil. Cytoskeleton 60, 24 (2004).
18.D. E. Discher, P. Janmey, and Y.-L. Wang, Science 310, 1139 (2005).
19.J. Wang, M. Pumera, M. P. Chatrathi, A. Escarpa, R. Konrad, A. Griebel, W. Dörner, and H. Löwe, Electrophoresis 23, 596 (2002).<596::AID-ELPS596>3.0.CO;2-C
20.B. Zhang, H. Liu, B. L. Karger, and F. Foret, Anal. Chem. 71, 3258 (1999).
21.P. Belgrader, J. K. Smith, V. W. Weedn, and M. A. Northrup, J. Forensic Sci. 43, 315 (1998).
22.T. M.-H. Lee, M. C. Carles, and I.-M. Hsing, Lab Chip 3, 100 (2003).
23.M. Curico and J. Roegraade, Anal. Chem. 75, 1 (2003).
24. W. C. Dunn, S. C. Jacobson, L. C. Waters, N. Kroutchinina, J. Khandurina, R. S. Foote, M. J. Justice, L. J. Stubbs, and J. M. Ramsey, Anal. Biochem. 277, 157 (2000).
25.T. J. Pritchett, Electrophoresis 17, 1195 (1996).
26.G. J. Sommer, S. M. Kim, R. J. Littrell, and E. F. Hasselbrink, Faraday Discuss. R. Soc. Chem. 7, 898 (2007).
27.D. Erickson, D. Sinton, and D. Li, Faraday Discuss. R. Soc. Chem. 3, 141 (2003).
28.S. M. Kim, G. J. Sommer, M. A. Burns, and E. F. Hasselbrink, Anal. Chem. 78, 8028 (2006).
29.H. Mao, T. Yang, and P. S. Cremer, J. Am. Chem. Soc. 124, 4432 (2002).
30.A. Bahat, I. Tur-Kaspa, A. Gakamsky, L. C. Giojalas, Haim Breitbart, and M. Eisenbach, Nat. Med. 9, 149 (2003).
31.T. N. Behar, A. E. Schaffner, C. A. Colton, R. Somogyi, Z. Olah, C. Lehel, and J. L. Barker, J. Neurosci. 14, 29 (1994).
32.P. C. Wilkinson, Chemotaxis and Inflammation (Churchill Livingston, New York, 1982).
33.D. Zicha, G. A. Dunn, and A. F. Brown, J. Cell. Sci. 99, 769 (1991).
34.N. L. Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. V. D. Water, and M. Toner, Nat. Biotechnol. 20, 826 (2002).
35.W. S. Ryu and A. D. T. Samuel, J. Neurosci. 22, 5727 (2002).
36.E. M. Hedgecock and R. L. Russell, Proc. Natl. Acad. Sci. U.S.A. 72, 4061 (1975).
37.I. Mori and Y. Ohshima, Nature (London) 376, 344 (1995).
38.E. M. Lucchetta, J. H. Lee, L. A. Fu, N. H. Patel, and R. F. Ismagilov, Nature (London) 434, 1134 (2005).
39.B. E. Dayanc, S. H. Beachy, J. R. Ostberg, and E. A. Repasky, Int. J. Hyperthermia 24, 41 (2008).
40.H. M. Beere, B. B. Wolf, K. Cain, D. D. Mosser, A. Mahboubi, T. Kuwana, P. Tailor, R. I. Morimoto, G. M. Cohen, and D. R. Green, Nat. Cell Biol. 2, 469 (2000).
41.Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).

Data & Media loading...


Article metrics loading...



Studies on the effects of variations in temperature and mild temperature gradients on cells, gels, and scaffolds are important from the viewpoint of biological function. Small differences in temperature are known to elicit significant variations in cell behavior and individual protein reactivity. For the study of thermal effects and gradients in vitro, it is important to develop microfluidic platforms which are capable of controlling temperature gradients in an environment which mimics the range of physiological conditions. In the present paper, such a microfluidic thermal gradient system system is proposed which can create and maintain a thermal gradient throughout a cell-seeded gel matrix using the hot and cold water supply integrated in the system in the form of a countercurrent heat exchanger. It is found that a uniform temperature gradient can be created and maintained in the device even inside a high temperature and high humidity environment of an incubator. With the help of a hot and cold circuit controlled from outside the incubator the temperature gradient can be regulated. A numerical simulation of the device demonstrates the thermal feature of the chip. Cell viability and activity under a thermal gradient are examined by placing human breast cancercells in the device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd