Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/2/4/10.1063/1.3037326
1.
1.P. S. Dittrich, K. Tachikawa, and A. Manz, Anal. Chem. 78, 3887 (2006);
http://dx.doi.org/10.1021/ac0605602
1.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
2.
2.C.-H. Lin and T. Kaneta, Electrophoresis 25, 4058 (2004).
http://dx.doi.org/10.1002/elps.200406172
3.
3.J. Dai, T. Ito, L. Sun, and R. M. Crooks, J. Am. Chem. Soc. 125, 13026 (2003);
http://dx.doi.org/10.1021/ja0374776
3.Y.-C. Wang, A. L. Stevens, and J. Han, Anal. Chem. 77, 4293 (2005).
http://dx.doi.org/10.1021/ac050321z
4.
4.J. Khandurina, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey, Anal. Chem. 71, 1815 (1999).
http://dx.doi.org/10.1021/ac981161c
5.
5.C. Yu, M. H. Davey, F. Svec, and J. M. J. Frechet, Anal. Chem. 73, 5088 (2001).
http://dx.doi.org/10.1021/ac0106288
6.
6.S. N. Brahmasandra, V. M. Ugaz, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, Electrophoresis 22, 300 (2001);
http://dx.doi.org/10.1002/1522-2683(200101)22:2<300::AID-ELPS300>3.0.CO;2-F
6.F. A. Shaikh and V. M. Ugaz, Proc. Natl. Acad. Sci. U.S.A. 103(13), 4825 (2006).
http://dx.doi.org/10.1073/pnas.0506848103
7.
7.S. M. Kim, M. A. Burns, and E. F. Hasselbrink, Anal. Chem. 78, 4779 (2006).
http://dx.doi.org/10.1021/ac060031y
8.
8.A. V. Hatch, A. E. Herr, D. J. Throckmorton, J. S. Brennan, and A. K. Singh, Anal. Chem. 78, 4976 (2006).
http://dx.doi.org/10.1021/ac0600454
9.
9.H. Morgan and N. G. Green, AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press, Hertfordshire, England, 2003).
10.
10.N. G. Green, A. Ramos, A. Gonzalez, H. Morgan, and A. Castellanos, Phys. Rev. E 61, 4011 (2000);
http://dx.doi.org/10.1103/PhysRevE.61.4011
10.A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, Phys. Rev. E 61, 4019 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.4019
11.
11.M. R. Brown and C. D. Meinhart, Microfluid. Nanofluid. 2, 513 (2006).
http://dx.doi.org/10.1007/s10404-006-0097-4
12.
12.Z. Gagnon and H.-C. Chang, Electrophoresis 26, 372 (2005).
13.
13.J. T. Wu, J. R. Du, Y. J. Juang, and H.-H. Wei, Appl. Phys. Lett. 90, 134103 (2007).
http://dx.doi.org/10.1063/1.2717146
14.
14.D. Lastochkin, R. Zhou, P. Wang, Y. Ben, and H.-C. Chang, J. Appl. Phys. 96, 1730 (2004).
http://dx.doi.org/10.1063/1.1767286
15.
15.L. Mitnik, C. Heller, J. Prost, and J. L. Viovy, Science 267, 219 (1995).
http://dx.doi.org/10.1126/science.7809626
16.
16.S. Fraden, A. J. Hurd, and R. B. Meyer, Phys. Rev. Lett. 63, 2373 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.2373
17.
17.N. G. Green, A. Ramos, A. Gonzalez, A. Castellanos, and H. Morgan, J. Phys. D: Appl. Phys. 33, L13 (2000).
http://dx.doi.org/10.1088/0022-3727/33/2/102
18.
18.A. R. Minerick, R. Zhou, P. Takhistov, and H.-C. Chang, Electrophoresis 24, 3703 (2003).
http://dx.doi.org/10.1002/elps.200305644
19.
19.M. Washizu and O. Kurosawa, IEEE Trans. Ind. Appl. 26, 1165 (1990).
http://dx.doi.org/10.1109/28.62403
20.
20.S. Wang, X. Hu, and L. J. Lee, J. Am. Chem. Soc. 129, 254 (2007).
http://dx.doi.org/10.1021/ja0666295
http://aip.metastore.ingenta.com/content/aip/journal/bmf/2/4/10.1063/1.3037326
Loading
/content/aip/journal/bmf/2/4/10.1063/1.3037326
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/2/4/10.1063/1.3037326
2008-12-05
2016-12-11

Abstract

In this work we report a microfluidic platform capable of trapping and concentrating a trace amount of DNA molecules efficiently. Our strategy invokes nonlinear electro-osmotic flow induced by charge polarization under high-frequency ac fields. With the asymmetric quadrupoleelectrode design, a unique converging flow structure can be created for generating focusing effects on DNA molecules. This focusing in turn transforms into a robust funnel that can collect DNA molecules distantly from the bulk and pack them into a compact cone with the aid of short-range dipole-induced self-attraction and dielectrophoresis. Our results reveal that not only can DNA molecules be concentrated within just a few seconds, but also they can be focused into threads of in length, demonstrating the superfast and long-range trapping capability of this funnel. In addition, pico M DNA solutions can be concentrated with several decades of enhancement without any continuous feeding. Alternating concentration and release of DNA molecules is also illustrated, which has potentials in concentrating and transporting biomolecules in a continuous fashion using microdevices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/2/4/1.3037326.html;jsessionid=qgaJkhQ97rkJSzNGotQbIwN4.x-aip-live-02?itemId=/content/aip/journal/bmf/2/4/10.1063/1.3037326&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/2/4/10.1063/1.3037326&pageURL=http://scitation.aip.org/content/aip/journal/bmf/2/4/10.1063/1.3037326'
Right1,Right2,Right3,