1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Microfluidic electrospinning of biphasic nanofibers with Janus morphology
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/1/10.1063/1.3009288
1.
1.P. G. DeGennes, Rev. Mod. Phys. 64, 645 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.645
2.
2.C. Casagrande, P. Fabre, M. Veyysie, and E. Raphael, Europhys. Lett. 9, 251 (1989).
http://dx.doi.org/10.1209/0295-5075/9/3/011
3.
3.B. Gruning, V. Holtschmidt, G. Koerner, and G. Rossmy, U.S. Patent 4,715,1986 (1987).
4.
4.A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, and E. Duguet, J. Mater. Chem. 15, 3745 (2005).
http://dx.doi.org/10.1039/b505099e
5.
5.K. H. Roh, D. C. Martin, and J. Lahann, Nature Mater. 4, 759 (2005).
http://dx.doi.org/10.1038/nmat1486
6.
6.D. Dendukuri, T. A. Hatton, and P. S. Doyle, Langmuir 23, 4669 (2007).
http://dx.doi.org/10.1021/la062512i
7.
7.D. Suzuki and H. Kawaguchi, Colloid Polym. Sci. 284, 1471 (2006).
http://dx.doi.org/10.1007/s00396-006-1524-5
8.
8.V. N. Paunov and O. J. Cayre, Adv. Mater. (Weinheim, Ger.) 16, 788 (2004).
http://dx.doi.org/10.1002/adma.200306476
9.
9.Z. H. Nie, W. Li, M. Seo, S. Xu, and E. Kumacheva, J. Am. Chem. Soc. 128, 9408 (2006).
http://dx.doi.org/10.1021/ja060882n
10.
10.T. Nisisako, T. Torii, T. Takahashi, and Y. Takizawa, Adv. Mater. (Weinheim, Ger.) 18, 1152 (2006).
http://dx.doi.org/10.1002/adma.200502431
11.
11.H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, Chem. Mater. 19, 3506 (2007).
http://dx.doi.org/10.1021/cm070280i
12.
12.Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendroff, and A. Greiner, Adv. Mater. (Weinheim, Ger.) 15, 1929 (2003).
http://dx.doi.org/10.1002/adma.200305136
13.
13.D. Li and Y. N. Xia, Nano Lett. 4, 933 (2004).
http://dx.doi.org/10.1021/nl049590f
14.
14.I. G. Loscertales, A. Barrero, M. Marquez, R. Spretz, and R. Velarde-Ortiz, J. Am. Chem. Soc. 126, 5376 (2004).
http://dx.doi.org/10.1021/ja049443j
15.
15.T. Song, Y. Z. Zhang, T. J. Zhou, C. T. Lim, S. Ramakrishna, and B. Liu, Chem. Phys. Lett. 415, 317 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.09.035
16.
16.J. T. McCann, D. Li, and Y. N. Xia, J. Mater. Chem. 15, 735 (2005).
http://dx.doi.org/10.1039/b415094e
17.
17.J. H. Yu, S. V. Fridrikh, and G. C. Rutledge, Adv. Mater. (Weinheim, Ger.) 16, 1562 (2004).
http://dx.doi.org/10.1002/adma.200306644
18.
18.P. Gupta and G. L. Wilkes, Polymer 44, 6353 (2003).
http://dx.doi.org/10.1016/S0032-3861(03)00616-5
19.
19.T. Lin, H. X. Wang, and X. G. Wang, Adv. Mater. (Weinheim, Ger.) 17, 2699 (2005).
http://dx.doi.org/10.1002/adma.200500901
20.
20.Z. Y. Liu, D. D. Sun, P. Guo, and J. O. Leckie, Nano Lett. 7, 1081 (2007).
http://dx.doi.org/10.1021/nl061898e
21.
21.B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Polymer 45, 1895 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.01.026
22.
22.O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, Nanotechnology 17, 1123 (2006).
http://dx.doi.org/10.1088/0957-4484/17/4/046
23.
23.S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, Polymer 46, 2889 (2005).
http://dx.doi.org/10.1016/j.polymer.2005.01.054
24.
24.W. Tomaszewski and M. Szadkowski, Fibres and Textiles in Eastern Europe 13, 22 (2005).
25.
25.Y. Srivastava, M. Marquez, and T. Thorsen, J. Appl. Polym. Sci. 106, 3171 (2007).
http://dx.doi.org/10.1002/app.26810
26.
26.Y. Srivastava, I. Locertales, M. Marquez and T. Thorsen, Microfluid. Nanofluid. 4, 245 (2008).
http://dx.doi.org/10.1007/s10404-007-0177-0
27.
27.J. Kameoka and H. G. Craighead, Appl. Phys. Lett. 83, 371 (2003).
http://dx.doi.org/10.1063/1.1592638
28.
28.N. V. Bhat and Y. B. Shaikh, J. Appl. Polym. Sci. 53, 187 (1994).
http://dx.doi.org/10.1002/app.1994.070530207
29.
29.A. G. MacDiarmid, W. E. Jones, Jr., I. D. Norris, J. Gao, A. T. Johnson, Jr., N. J. Pinto, J. Hone, B. Han, F. K. Ko, H. Okuzaki, and M. Llaguno, Synth. Met. 119, 27 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00597-X
30.
30.T. S. Kang, S. W. Lee, J. Joo, and J. Y. Lee, J. Chem. Synth. Met. 153, 61 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.07.135
31.
31.S. Nair, S. Natarajan, and S. H. Kim, Macromol. Rapid Commun. 26, 1599 (2005).
http://dx.doi.org/10.1002/marc.200500457
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3009288
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic representation of the electrospinning setup using PDMS microfluidic device source for parallel spinning of biphasic Janus type nanofibers. (b) Layout of the channel geometry illustrating the dual microchannel architecture and connection ports to feed the solution A (PVP) and solution B .

Image of FIG. 2.

Click to view

FIG. 2.

(a) Scanning electron microscopy (SEM) image of the Janus nanofibers of , indicating the biphasic nanofibers were continuous and formed a nonwoven mesh. (b) High-resolution SEM image of a single Janus nanofiber, clearly showing the side-by-side morphology of the two PVP and phases.

Image of FIG. 3.

Click to view

FIG. 3.

TEM image of bicomponent nanofibers showing the presence of conducting and nonconducting phase in a Janus type morphology. The dark contrast is due to the presence of conducting polypyrrole.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Typical EDS microanalysis on selected area A of a single Janus nanofiber, revealing the absence of and . (b) EDS of selected region B of a single Janus nanofiber, which is at the boundary of the two phases, showing very small trace of Ti, O, Fe, and Cl in the nanofiber. (c) EDS of region C of the conducting phase, showing the peaks for Ti, O, Fe, Cl.

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3009288
2009-01-07
2014-04-18

Abstract

In this paper a method of electrospinning conducting and nonconducting biphasic Janus nanofibers using microfluidicpolydimethylsiloxane (PDMS)-based manifolds is described. Key benefits of using microfluidic devices for nanofiber synthesis include rapid prototyping, ease of fabrication, and the ability to spin multiple Janus fibers in parallel through arrays of individual microchannels. Biphasic Janus nanofibers of polyvinylpyrrolidone (PPy)/PVP nanofibers with an average diameter of were successfully fabricated using elastomeric microfluidic devices. Fiber characterization and confirmation of the Janus morphology was subsequently carried out using a combination of scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3009288.html;jsessionid=2l4ddda6dbjba.x-aip-live-01?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3009288&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microfluidic electrospinning of biphasic nanofibers with Janus morphology
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3009288
10.1063/1.3009288
SEARCH_EXPAND_ITEM