Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/1/10.1063/1.3055275
1.
1.J. L. Viovy, Rev. Mod. Phys. 72, 813 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.813
2.
2.E. Y. Chan, N. M. Goncalves, R. A. Haeusler, A. J. Hatch, J. W. Larson, A. M. Maletta, G. R. Yantz, E. D. Carstea, M. Fuchs, G. G. Wong, S. Gullans, and R. Gilmanshin, Genome Res. 14, 1137 (2004).
http://dx.doi.org/10.1101/gr.1635204
3.
3.K. M. Phillips, J. W. Larson, G. R. Yantz, C. M. D’Antoni, M. V. Gallo, K. A. Gillis, N. M. Goncalves, L. A. Neely, S. R. Gullans, and R. Gilmanshin, Nucleic Acids Res. 33, 5829 (2005).
http://dx.doi.org/10.1093/nar/gki895
4.
4.J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, Phys. Rev. Lett. 86, 1378 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1378
5.
5.P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
6.
6.J. O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W. W. Reisner, R. Riehn, Y. M. Wang, E. C. Cox, J. C. Sturm, P. Silberzan, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 101, 10979 (2004).
http://dx.doi.org/10.1073/pnas.0403849101
7.
7.R. Riehn, M. C. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 102, 10012 (2005).
http://dx.doi.org/10.1073/pnas.0503809102
8.
8.S. B. Smith, L. Finzi, and C. Bustamante, Science 258, 1122 (1992).
http://dx.doi.org/10.1126/science.1439819
9.
9.T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, Science 271, 1835 (1996).
http://dx.doi.org/10.1126/science.271.5257.1835
10.
10.T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, Science 268, 83 (1995).
http://dx.doi.org/10.1126/science.7701345
11.
11.M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, Biophys. J. 72, 1335 (1997).
12.
12.W. D. Volkmuth and R. H. Austin, Nature (London) 358, 600 (1992).
http://dx.doi.org/10.1038/358600a0
13.
13.N. Minc, C. Futterer, K. Dorfman, A. Bancaud, C. Gosse, C. Goubault, and J. L. Viovy, Anal. Chem. 76, 3770 (2004).
http://dx.doi.org/10.1021/ac035246b
14.
14.N. P. Teclemariam, V. A. Beck, E. S. G. Shaqfeh, and S. J. Muller, Macromolecules 40, 3848 (2007).
http://dx.doi.org/10.1021/ma062892e
15.
15.T. T. Perkins, D. E. Smith, and S. Chu, Science 276, 2016 (1997).
http://dx.doi.org/10.1126/science.276.5321.2016
16.
16.E. S. G. Shaqfeh, J. Non-Newtonian Fluid Mech. 130, 1 (2005).
http://dx.doi.org/10.1016/j.jnnfm.2005.05.011
17.
17.J. W. Larson, G. R. Yantz, Q. Zhong, R. Charnas, C. M. D’Antoni, M. V. Gallo, K. A. Gillis, L. A. Neely, K. M. Phillips, G. G. Wong S. R. Gullans, and R. Gilmanshin, Lab Chip 6, 1187 (2006).
http://dx.doi.org/10.1039/b602845d
18.
18.G. C. Randall, K. M. Schultz, and P. S. Doyle, Lab Chip 6, 516 (2006).
http://dx.doi.org/10.1039/b515326c
19.
19.J. M. Kim and P. S. Doyle, Lab Chip 7, 213 (2007).
http://dx.doi.org/10.1039/b612021k
20.
20.A. Balducci and P. S. Doyle, Macromolecules 41, 5485 (2008).
http://dx.doi.org/10.1021/ma8010087
21.
21.P. G. de Gennes, Science 276, 1999 (1997).
http://dx.doi.org/10.1126/science.276.5321.1999
22.
22.R. G. Larson, J. Non-Newtonian Fluid Mech. 94, 37 (2000).
http://dx.doi.org/10.1016/S0377-0257(00)00125-7
23.
23.W. D. Volkmuth, T. Duke, M. C. Wu, R. H. Austin, and A. Szabo, Phys. Rev. Lett. 72, 2117 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2117
24.
24.G. C. Randall and P. S. Doyle, Macromolecules 38, 2410 (2005).
http://dx.doi.org/10.1021/ma048073g
25.
25.G. C. Randall and P. S. Doyle, Macromolecules 39, 7734 (2006).
http://dx.doi.org/10.1021/ma061375t
26.
26.G. I. Nixon and G. W. Slater, Phys. Rev. E 50, 5033 (1994).
http://dx.doi.org/10.1103/PhysRevE.50.5033
27.
27.P. M. Saville and E. M. Sevick, Macromolecules 32, 892 (1999).
http://dx.doi.org/10.1021/ma981049g
28.
28.J. M. Kim and P. S. Doyle, Macromolecules 40, 9151 (2007).
http://dx.doi.org/10.1021/ma0710434
29.
29.P. D. Patel and E. S. G. Shaqfeh, J. Chem. Phys. 118, 2941 (2003).
http://dx.doi.org/10.1063/1.1532729
30.
30.K. D. Dorfman, Phys. Rev. E 73, 061922 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.061922
31.
31.A. Mohan and P. S. Doyle, Phys. Rev. E 76, 040903 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.040903
32.
32.J. M. Kim and P. S. Doyle, J. Chem. Phys. 125, 074906 (2006).
http://dx.doi.org/10.1063/1.2222374
33.
33.G. C. Randall and P. S. Doyle, Phys. Rev. Lett. 93, 058102 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.058102
34.
34.T. W. Liu, J. Chem. Phys. 90, 5826 (1989).
http://dx.doi.org/10.1063/1.456389
35.
35.D. E. Smith, H. P. Babcock, and S. Chu, Science 283, 1724 (1999).
http://dx.doi.org/10.1126/science.283.5408.1724
36.
36.R. G. Larson and J. J. Magda, Macromolecules 22, 3004 (1989).
http://dx.doi.org/10.1021/ma00197a022
37.
37.D. E. Smith and S. Chu, Science 281, 1335 (1998).
http://dx.doi.org/10.1126/science.281.5381.1335
38.
38.J. F. Marko and E. D. Siggia, Macromolecules 28, 8759 (1995).
http://dx.doi.org/10.1021/ma00130a008
39.
39.R. G. Larson, H. Hu, D. E. Smith, and S. Chu, J. Rheol. 43, 267 (1999).
http://dx.doi.org/10.1122/1.550991
40.
40.C. M. Schroeder, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Science 301, 1515 (2003).
http://dx.doi.org/10.1126/science.1086070
41.
41.J. Tang and P. S. Doyle, Appl. Phys. Lett. 90, 224103 (2007).
http://dx.doi.org/10.1063/1.2745650
42.
42.C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, Science 265, 1599 (1994).
http://dx.doi.org/10.1126/science.8079175
43.
43.J. L. Barrat and J. F. Joanny, Adv. Chem. Phys. 94, 1 (1996).
http://dx.doi.org/10.1002/9780470141533.ch1
44.
44.D. Long, A. V. Dobrynin, M. Rubinstein, and A. Ajdari, J. Chem. Phys. 108, 1234 (1998).
http://dx.doi.org/10.1063/1.475485
45.
45.S. Ferree and H. W. Blanch, Biophys. J. 85, 2539 (2003).
46.
46.A. Balducci, P. Mao, J. Han, and P. S. Doyle, Macromolecules 39, 6273 (2006).
http://dx.doi.org/10.1021/ma061047t
47.
47.P. T. Underhill and P. S. Doyle, J. Non-Newtonian Fluid Mech. 122, 3 (2004).
http://dx.doi.org/10.1016/j.jnnfm.2003.10.006
48.
48.R. M. Jendrejack, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 116, 7752 (2002).
http://dx.doi.org/10.1063/1.1466831
49.
49.D. M. Heyes and J. R. Melrose, J. Non-Newtonian Fluid Mech. 46, 1 (1993).
http://dx.doi.org/10.1016/0377-0257(93)80001-R
50.
50.C. F. Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, and R. H. Austin, Biophys. J. 83, 2170 (2002).
51.
51.J. Regtmeier, T. T. Duong, R. Eichhorn, D. Anselmetti, and A. Ros, Anal. Chem. 79, 3925 (2007).
http://dx.doi.org/10.1021/ac062431r
52.
52.E. Petersen, B. Q. Li, X. H. Fang, H. B. Luo, V. Samuilov, D. Gersappe, J. Sokolov, B. Chu, and M. Rafailovich, Phys. Rev. Lett. 98, 088102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.088102
53.
53.G. O. F. Parikesit, A. P. Markesteijn, O. M. Piciu, A. Bossche, J. Westerweel, I. T. Young, and Y. Garini, Biomicrofluidics 2, 024103 (2008).
http://dx.doi.org/10.1063/1.2930817
54.
54.A. Ajdari and J. Prost, Proc. Natl. Acad. Sci. U.S.A. 88, 4468 (1991).
http://dx.doi.org/10.1073/pnas.88.10.4468
55.
55.J. S. Bowers and R. K. Prudhomme, J. Chem. Phys. 96, 7135 (1992).
http://dx.doi.org/10.1063/1.462547
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3055275
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3055275
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3055275
2009-01-07
2016-09-30

Abstract

Recently our group has reported experiments using an obstacle array to precondition the conformations of DNA molecules to facilitate their stretch in a microcontraction. Based upon previous successes simulating electrophoretic stretching in microcontractions without obstacles, we use our simulation model to study the deformation of DNA chains in a microcontraction preceded by an array of cylindrical obstacles. We compare our data to the experimental results and find good qualitative, and even quantitative, agreement concerning the behavior of the chains in the array; however, the simulations overpredict the mean stretch of the chains as they leave the contraction. We examine the amount of stretch gained between leaving the array and reaching the end of the contraction and speculate that the differences seen are caused by nonlinear electrokinetic effects that become important in the contraction due to a combination of field gradients and high field strengths.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3055275.html;jsessionid=pSpocGQZ86iquUshwCzuks8X.x-aip-live-02?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3055275&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/1/10.1063/1.3055275&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/1/10.1063/1.3055275'
Right1,Right2,Right3,