Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/1/10.1063/1.3055278
1.
1.C. Simmonet and A. Groisman, Appl. Phys. Lett. 87, 114104 (2005).
http://dx.doi.org/10.1063/1.2046729
2.
2.A. Jahn, W. N. Vreeland, M. Gaitan, and L. E. Locasio, J. Am. Chem. Soc. 126, 2674 (2004).
http://dx.doi.org/10.1021/ja0318030
3.
3.T. Stiles, R. Fallon, T. Vestad, J. Oakey, D. W. M. Marr, J. Squier, and R. Jimenez, Microfluid. Nanofluid. 1, 280 (2005).
http://dx.doi.org/10.1007/s10404-005-0033-z
4.
4.M. R. Holl, P. Galambos, F. K. Forster, J. P. Brody, M. A. Afromowitz, and P. Yager, Proc. ASME, DSC59, 323 (1996).
5.
5.G. B. Lee, C. H. Lin, and S. C. Chang, J. Micromech. Microeng. 15, 447 (2005).
http://dx.doi.org/10.1088/0960-1317/15/3/004
6.
6.Wang E. Tu, D. E. Raymond, J. M. Yang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, Nat. Biotechnol. 23, 83 (2005).
http://dx.doi.org/10.1038/nbt1050
7.
7.L. Koutny, D. Schmalzing, O. Salas-Solano, S. El-Difrawy, A. Adourian, S. Buonocore, K. Abbey, P. McEwan, P. Matsudaira, and D. Ehrlich, Anal. Chem. 72, 3388 (2000).
http://dx.doi.org/10.1021/ac9913614
8.
8.N. Gedecke, B. McKenna, S. El-Difrway, E. Gismondi, A. Swenson, L. Carey, P. Matsudaira, and D. J. Ehrlich, J. Chromatogr. A 1111, 206 (2006).
http://dx.doi.org/10.1016/j.chroma.2005.05.100
9.
9.B. K. McKenna, H. Salim, F. R. Bringhurst, and D. J. Ehrlich, Lab Chip 9, 305 (2009).
http://dx.doi.org/10.1039/b811889b
10.
10.G. Segre and A. Silberberg, J. Fluid Mech. 14, 136 (1962).
http://dx.doi.org/10.1017/S0022112062001111
11.
11.B. H. Yang, J. Wang, D. D. Joseph, H. H. Hu, T. W. Pan, and R. Glowinski, J. Fluid Mech. 540, 109 (2005).
http://dx.doi.org/10.1017/S0022112005005677
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3055278
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3055278
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3055278
2009-01-08
2016-10-01

Abstract

Vertical hydrodynamic focusing in microfluidic devices is investigated through simulation and through direct experimental verification using a confocal microscope and a novel form of stroboscopic imaging. Optimization for microfluidic cytometry of biological cells is examined. By combining multiple crossing junctions, it is possible to confine cells to a single analytic layer of interest. Subtractive flows are investigated as a means to move the analysis layer vertically in the channel and to correct the flatness of this layer. The simulation software (ADINA and Coventor) is shown to accurately capture the complex dependencies of the layer interfaces, which vary strongly with channel geometry and relative flow rates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3055278.html;jsessionid=w6x1-lC67XFzDWSbuIgMXLlg.x-aip-live-02?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3055278&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/1/10.1063/1.3055278&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/1/10.1063/1.3055278'
Right1,Right2,Right3,