1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Understanding electrokinetics at the nanoscale: A perspective
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/1/10.1063/1.3056045
1.
1.S.-C. Wang, H.-H. Wei, H.-P. Chen, M.-H. Tsai, C.-C. Yu, and H.-C. Chang, Biomicrofluidics 2, 014101 (2008).
http://dx.doi.org/10.1063/1.2894313
2.
2.P. Wang, Z. Chen, and H.-C. Chang, Electrophoresis 27, 3964 (2006).
http://dx.doi.org/10.1002/elps.200600120
3.
3.Z. Chen, B. Boggess, and H.-C. Chang, J. Mass Spectrom. 42, 244 (2007).
http://dx.doi.org/10.1002/jms.1158
4.
4.Z. Chen, F.-C. Hsu, D. Battigelli, and H.-C. Chang, Anal. Chim. Acta 569, 76 (2006).
http://dx.doi.org/10.1016/j.aca.2006.03.103
5.
5.T. M. H. Lee, M. Carles, and I.-M. Hsing, Lab Chip 3, 100 (2003).
http://dx.doi.org/10.1039/b300799e
6.
6.J. Yang, F. Lu, L. W. Kostiuk, and D. Y. Kwok, J. Nanosci. Nanotechnol. 5, 648 (2005).
http://dx.doi.org/10.1166/jnn.2005.059
7.
7.D. Stein, M. Kruithof, and C. Dekker, Phys. Rev. Lett. 93, 035901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.035901
8.
8.M. Ali, V. Bayer, B. Schiedt, R. Neumann, and W. Ensinger, Nanotechnology 19, 485711 (2008).
http://dx.doi.org/10.1088/0957-4484/19/48/485711
9.
9.S. J. Kim, Y. C. Wang, J. H. Lee, H. Jang, and H. Han, Phys. Rev. Lett. 99, 044501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.044501
10.
10.N. Lakshminarayanaiah, Membrane Electrodes (Academic, New York, 1976).
11.
11.J. Keener and J. Sneyd, Mathematical Physiology (Springer, New York, 2009).
12.
12.G. Yossifon, P. Mushenheim, Y.-C. Chang, and H.-C. Chang, “Nonlinear I-V characteristics of nano-pores,” Phys. Rev. E (submitted).
13.
13.V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, New York, 1962).
14.
14.S. S. Dukhin, Adv. Colloid Interface Sci. 35, 173 (1991).
http://dx.doi.org/10.1016/0001-8686(91)80022-C
15.
15.I. Rubinstein and L. Shtilman, J. Chem. Soc., Faraday Trans. 2 75, 231 (1979).
http://dx.doi.org/10.1039/f29797500231
16.
16.Y. Ben and H.-C. Chang, J. Fluid Mech. 461, 229 (2002).
http://dx.doi.org/10.1017/S0022112002008662
17.
17.I. Rubinstein, E. Staude, and O. Kedem, Desalination 69, 101 (1988).
http://dx.doi.org/10.1016/0011-9164(88)80013-4
18.
18.G. Yossifon and H.-C. Chang, Phys. Rev. Lett. 100, 254501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.254501
19.
19.I. Rubinstein and B. Zaltzman, Phys. Rev. E 62, 2 (2000).
20.
20.R. J. Hunter, Foundations of Colloid Science (Clarendon, Oxford, 1989), Vol. 2.
21.
21.S. Ehlert, D. Hlushkou, and U. Tallerek, Microfluid. Nanofluid. 4, 471 (2008).
http://dx.doi.org/10.1007/s10404-007-0200-5
22.
22.G. Yossifon, Y.-C. Chang, and H.-C. Chang, “Rectification, gating voltage and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization,” Phys. Rev. Lett. (submitted).
23.
23.I. Vlassiouk and Z. S. Siwy, Nano Lett. 7, 552 (2007).
http://dx.doi.org/10.1021/nl062924b
24.
24.S. Basuray and H.-C. Chang, Phys. Rev. E 75, 060501 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.060501
25.
25.H.-C. Chang, AIChE J. 53, 2486 (2007).
http://dx.doi.org/10.1002/aic.11286
26.
26.O. Orlychenko, Y. Ye, and H.-C. Chang, Phys. Rev. E 57, 5196 (1998).
http://dx.doi.org/10.1103/PhysRevE.57.5196
27.
27.I.-F. Cheng, H.-C. Chang, D. Hou, and H.-C. Chang, Biomicrofluidics 1, 021503 (2007).
http://dx.doi.org/10.1063/1.2723669
28.
28.J. Gordon, Z. Gagnon, and H.-C. Chang, Biomicrofluidics 1, 044102 (2007).
http://dx.doi.org/10.1063/1.2818767
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3056045
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3056045
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3056045
2009-01-02
2014-09-23

Abstract

Electrokinetics promises to be the microfluidic technique of choice for portable diagnostic chips and for nanofluidic molecular detectors. However, despite two centuries of research, our understanding of ion transport and electro-osmotic flow in and near nanoporousmembranes, whose pores are natural nanochannels, remains woefully inadequate. This short exposition reviews the various ion-flux and hydrodynamic anomalies and speculates on their potential applications, particularly in the area of molecular sensing. In the process, we revisit several old disciplines, with some unsolved open questions, and we hope to create a new one.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3056045.html;jsessionid=1aj3fi0226jai.x-aip-live-02?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3056045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Understanding electrokinetics at the nanoscale: A perspective
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3056045
10.1063/1.3056045
SEARCH_EXPAND_ITEM