Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/1/10.1063/1.3067820
1.
1.C. Zhu, G. Bao, and N. Wang, Annu. Rev. Biomed. Eng. 2, 189 (2000);
http://dx.doi.org/10.1146/annurev.bioeng.2.1.189
1.G. Bao and S. Suresh, Nature Mater. 2, 715 (2003).
http://dx.doi.org/10.1038/nmat1001
2.
2.S. Kasas and G. Dietler, Pfluegers Arch. Eur. J. Physiol. 456, 13 (2008).
http://dx.doi.org/10.1007/s00424-008-0448-y
3.
3.S. Suresh, Acta Biomater. 3, 413 (2007).
4.
4.D. E. Discher, E. P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).
http://dx.doi.org/10.1126/science.1116995
5.
5.S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, Nat. Nanotechnol. 2, 780 (2007).
http://dx.doi.org/10.1038/nnano.2007.388
6.
6.G. Y. H. Lee and C. T. Lim, Trends Biotechnol. 25, 111 (2007).
7.
7.G. B. Nash, C. S. Johnson, and H. J. Meiselman, Blood 63, 73 (1984).
8.
8.D. E. Ingber, Ann. Med. 35, 564 (2003).
9.
9.J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, Biophys. J. 88, 3689 (2005).
http://dx.doi.org/10.1529/biophysj.104.045476
10.
10.T. D. Pollard and G. G. Borisy, Cell 112, 453 (2003);
http://dx.doi.org/10.1016/S0092-8674(03)00120-X
10.A. R. Bausch and K. Kroy, Nat. Phys. 2, 231 (2006).
11.
11.P. F. Davies, Physiol. Rev. 75, 519 (1995).
12.
12.A. S. French, Annu. Rev. Physiol. 54, 135 (1992);
12.P. G. Gillespie and R. G. Walker, Nature (London) 413, 194 (2001);
http://dx.doi.org/10.1038/35093011
12.O. P. Hamill and B. Martinac, Physiol. Rev. 81, 685 (2001);
12.P. A. Watson, FASEB J. 5, 2013 (1991);
12.N. Wang, J. P. Butler, and D. E. Ingber, Science 260, 1124 (1993).
http://dx.doi.org/10.1126/science.7684161
13.
13.S. Kumar and P. R. LeDuc, Exp. Mech. 10.1007/s11340-007-9063-7 (2007);
http://dx.doi.org/10.1007/s11340-007-9063-7
13.P. R. LeDuc and R. M. Bellin, Ann. Biomed. Eng. 34, 102 (2006).
http://dx.doi.org/10.1007/s10439-005-9008-1
14.
14.P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, and J. J. Fredberg, Nature Mater. 4, 557 (2005);
http://dx.doi.org/10.1038/nmat1404
14.B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, Proc. Natl. Acad. Sci. U.S.A. 103, 10259 (2006);
http://dx.doi.org/10.1073/pnas.0510348103
14.K. E. Kasza, A. C. Rowat, J. Y. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, and D. A. Weitz, Curr. Opin. Cell Biol. 19, 101 (2007);
http://dx.doi.org/10.1016/j.ceb.2006.12.002
14.X. Trepat, L. H. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, Nature (London) 447, 592 (2007);
http://dx.doi.org/10.1038/nature05824
14.D. E. Ingber, J. Cell. Sci. 116, 1397 (2003);
http://dx.doi.org/10.1242/jcs.00360
14.C. Sultan, D. Stamenovic, and D. E. Ingber, Ann. Biomed. Eng. 32, 520 (2004).
http://dx.doi.org/10.1023/B:ABME.0000019171.26711.37
15.
15.K. J. Van Vliet, G. Bao, and S. Suresh, Acta Mater. 51, 5881 (2003);
http://dx.doi.org/10.1016/j.actamat.2003.09.001
15.T. P. Lele, J. E. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, Methods Cell Biol. 83, 443 (2007).
16.
16.D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998);
http://dx.doi.org/10.1021/ac980656z
16.Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
17.
17.M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Science 288, 113 (2000).
http://dx.doi.org/10.1126/science.288.5463.113
18.
18.G. M. Whitesides, Nature (London) 442, 368 (2006);
http://dx.doi.org/10.1038/nature05058
18.T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005);
http://dx.doi.org/10.1103/RevModPhys.77.977
18.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
19.
19.J. El-Ali, P. K. Sorger, and K. F. Jensen, Nature (London) 442, 403 (2006);
http://dx.doi.org/10.1038/nature05063
19.H. Andersson and A. van den Berg, Sens. Actuators B 92, 315 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00266-1
20.
20.L. Kim, Y. C. Toh, J. Voldman, H. Yu, Lab Chip 7, 681 (2007).
21.
21.F. Wolbers, P. ter Braak, S. Le Gac, R. Luttge, H. Andersson, I. Vermes, and A. van den Berg, Electrophoresis 27, 5073 (2006).
http://dx.doi.org/10.1002/elps.200600203
22.
22.R. Davidsson, A. Boketoft, J. Bristulf, K. Kotarsky, B. Olde, C. Owman, M. Bengtsson, T. Laurell, and J. Emneus, Anal. Chem. 76, 4715 (2004).
23.
23.A. W. Blau and C. M. Ziegler, J. Biochem. Biophys. Methods 50, 15 (2001);
http://dx.doi.org/10.1016/S0165-022X(01)00163-4
23.J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, Langmuir 20, 11684 (2004);
23.A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, and F. Baudenbacher, Biomed. Microdevices 6, 325 (2004);
23.A. Tourovskaia, X. Figueroa-Masot, and A. Folch, Lab Chip 5, 14 (2005);
http://dx.doi.org/10.1039/b405719h
23.R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, Anal. Chem. 79, 8557 (2007);
23.N. Futai, W. Gu, J. W. Song, and S. Takayama, Lab Chip 6, 149 (2006).
http://dx.doi.org/10.1039/b510901a
24.
24.J. Komen, F. Wolbers, H. R. Franke, H. Andersson, I. Vermes, and A. van den Berg, Biomed. Microdevices 10, 727 (2008).
25.
25.H. M. Yu, I. Meyvantsson, I. A. Shkel, and D. J. Beebe, Lab Chip 5, 1089 (2005);
25.P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, Biotechnol. Bioeng. 89, 1 (2005).
http://dx.doi.org/10.1002/bit.20289
26.
26.Y. S. Li, J. H. Haga, and S. Chien, J. Biomech. 38, 1949 (2005).
http://dx.doi.org/10.1016/j.jbiomech.2004.09.030
27.
27.Z. R. Healy, N. H. Lee, X. Q. Gao, M. B. Goldring, P. Talalay, T. W. Kensler, and K. Konstantopoulos, Proc. Natl. Acad. Sci. U.S.A. 102, 14010 (2005).
28.
28.J. Voldman, M. Gray, M. Toner, and M. Schmidt, Anal. Chem. 74, 3984 (2002).
http://dx.doi.org/10.1021/ac0256235
29.
29.M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, Nat. Biotechnol. 23, 83 (2005).
http://dx.doi.org/10.1038/nbt1050
30.
30.J. Hultstrom, O. Manneberg, K. Dopf, H. M. Hertz, H. Brismar, and M. Wiklund, Ultrasound Med. Biol. 33, 145 (2007);
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.024
30.H. Li, J. R. Friend, and L. Y. Yeo, Biomaterials 28, 4098 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.06.005
31.
31.B. L. Gray, D. K. Lieu, S. D. Collins, R. L. Smith, and A. I. Barakat, Biomed. Microdevices 4, 9 (2002).
32.
32.M. D. Frame and I. H. Sarelius, Microcirculation (Philadelphia) 7, 419 (2000);
32.G. Cinamon and R. Alon, J. Immunol. Methods 273, 53 (2003);
32.M. D. S. Frame, G. B. Chapman, Y. Makino, and I. H. Sarelius, Biorheology 35, 245 (1998);
32.U. Y. Schaff, M. M. Q. Xing, K. K. Lin, N. Pan, N. L. Jeon, and S. I. Simon, Lab Chip 7, 448 (2007);
32.Y. Tanaka, Y. Kikukawa, K. Sato, Y. Sugh, and T. Kitamori, Anal. Sci. 23, 261 (2007);
32.E. W. K. Young, A. R. Wheeler, and C. A. Simmons, Lab Chip 7, 1759 (2007);
32.C. J. Ku, T. D. Oblak, and D. M. Spence, Anal. Chem. 80, 7543 (2008);
32.K. Liu, R. Pitchimani, D. Dang, K. Bayer, T. Harrington, and D. Pappas, Langmuir 24, 5955 (2008);
32.A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, Lab Chip 8, 1292 (2008).
33.
33.J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, Biomed. Microdevices 4, 167 (2002).
34.
34.J. W. Song, W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama, Anal. Chem. 77, 3993 (2005).
http://dx.doi.org/10.1021/ac050131o
35.
35.D. Huh, H. Fujioka, Y. C. Tung, N. Futai, R. Paine, J. B. Grotberg, and S. Takayama, Proc. Natl. Acad. Sci. U.S.A. 104, 18886 (2007).
http://dx.doi.org/10.1073/pnas.0610868104
36.
36.M. Antia, T. Herricks, and P. K. Rathod, Cell. Microbiol. 10, 1968 (2008).
37.
37.J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, Proc. Natl. Acad. Sci. U.S.A. 100, 14618 (2003).
http://dx.doi.org/10.1073/pnas.2433968100
38.
38.J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 104, 20496 (2007).
39.
39.M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Lab Chip 8, 1062 (2008).
http://dx.doi.org/10.1039/b802931h
40.
40.X. Y. Zhu, L. Y. Chu, B. H. Chueh, M. W. Shen, B. Hazarika, N. Phadke, and S. Takayama, Analyst (Cambridge, U.K.) 129, 1026 (2004);
40.J. Atencia and D. J. Beebe, Lab Chip 6, 567 (2006);
http://dx.doi.org/10.1039/b514070f
40.S. D. Hudson, F. R. Phelan, M. D. Handler, J. T. Cabral, K. B. Migler, and E. J. Amis, Appl. Phys. Lett. 85, 335 (2004);
http://dx.doi.org/10.1063/1.1767594
40.J. S. Lee, R. Dylla-Spears, N. P. Teclemariam, and S. J. Muller, Appl. Phys. Lett. 90, 074103 (2007).
http://dx.doi.org/10.1063/1.2472528
41.
41.L. Yobas, K. C. Tang, S. E. Yong, and E. K. Z. Ong, Lab Chip 8, 660 (2008);
41.W. Gu, X. Y. Zhu, N. Futai, B. S. Cho, and S. Takayama, Proc. Natl. Acad. Sci. U.S.A. 101, 15861 (2004).
http://dx.doi.org/10.1073/pnas.0404353101
42.
42.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, Science 295, 647 (2002).
http://dx.doi.org/10.1126/science.1066238
43.
43.A. Groisman and V. Steinberg, Nature (London) 410, 905 (2001).
http://dx.doi.org/10.1038/35073524
44.
44.X. M. Zhao, Y. N. Xia, and G. M. Whitesides, J. Mater. Chem. 7, 1069 (1997).
http://dx.doi.org/10.1039/a700145b
45.
45.N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, Nat. Cell Biol. 3, 466 (2001).
http://dx.doi.org/10.1038/35074532
46.
46.I. B. Bischofs and U. S. Schwarz, Proc. Natl. Acad. Sci. U.S.A. 100, 9274 (2003).
http://dx.doi.org/10.1073/pnas.1233544100
47.
47.J. Solon, I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey, Biophys. J. 93, 4453 (2007).
http://dx.doi.org/10.1529/biophysj.106.101386
48.
48.A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).
http://dx.doi.org/10.1016/j.cell.2006.06.044
49.
49.D. N. Hohne, J. G. Younger, and M. J. Solomon, “Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms,” Langmuir(submitted).
50.
50.L. G. Griffith and M. A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211 (2006).
51.
51.S. R. Khetani and S. N. Bhatia, Nat. Biotechnol. 26, 120 (2008).
http://dx.doi.org/10.1038/nbt1361
52.
52.R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).
http://dx.doi.org/10.1016/S0142-9612(99)00165-9
53.
53.S. A. Vanapalli, D. Wijnperle, A. van den Berg, F. Mugele, and M. H. G. Duits, “Programmable structured elastomeric membranes as a multifunctional microfluidic tool,” Lab Chip (submitted).
54.
54.S. Takayama, E. Ostuni, P. R. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, Nature (London) 411, 1016 (2001).
http://dx.doi.org/10.1038/35082637
55.
55.B. Kuczenski, P. R. LeDuc, and W. C. Messner, Lab Chip 7, 647 (2007).
http://dx.doi.org/10.1039/b617065j
56.
56.F. Wang, H. Wang, J. Wang, H. Y. Wang, P. L. Rummel, S. V. Garimella, and C. Lu, Biotechnol. Bioeng. 100, 150 (2008).
http://dx.doi.org/10.1002/bit.21737
57.
57.S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Anal. Chem. 73, 1240 (2001);
http://dx.doi.org/10.1021/ac001132d
57.D. Irimia, D. A. Geba, and M. Toner, Anal. Chem. 78, 3472 (2006);
http://dx.doi.org/10.1021/ac0518710
57.K. Campbell and A. Groisman, Lab Chip 7, 264 (2007).
http://dx.doi.org/10.1039/b610011b
58.
58.M. Abkarian, M. Faivre, and H. A. Stone, Proc. Natl. Acad. Sci. U.S.A. 103, 538 (2006).
http://dx.doi.org/10.1073/pnas.0507171102
59.
59.N. Bao, Y. H. Zhan, and C. Lu, Anal. Chem. 80, 7714 (2008).
60.
60.A. Drochon, Med. Eng. Phys. 27, 157 (2005);
60.W. G. Lee, H. Bang, H. Yun, J. Lee, J. Park, J. K. Kim, S. Chung, S. Cho, C. Chung, D. C. Han, and J. K. Chang, Lab Chip 7, 516 (2007).
http://dx.doi.org/10.1039/b614912j
61.
61.N. Korin, A. Bransky, and U. Dinnar, J. Biomech. 40, 2088 (2007);
61.S. C. Gifford, M. G. Frank, J. Derganc, C. Gabel, R. H. Austin, T. Yoshida, and M. W. Bitensky, Biophys. J. 84, 623 (2003).
62.
62.H. Kiesewetter, U. Dauer, P. Teitel, H. Schmidschonbein, and R. Trapp, Biorheology 19, 737 (1982).
63.
63.R. S. Frank and R. M. Hochmuth, J. Biomech. 109, 103 (1987);
63.R. S. Frank and M. A. Tsai, J. Biomech. 112, 277 (1990).
64.
64.A. Groisman, M. Enzelberger, and S. R. Quake, Science 300, 955 (2003).
http://dx.doi.org/10.1126/science.1083694
65.
65.S. A. Vanapalli, D. van den Ende, M. H. G. Duits, and F. Mugele, Appl. Phys. Lett. 90, 114109 (2007).
http://dx.doi.org/10.1063/1.2713800
66.
66.S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannelsLab Chip10.1039/B815002H.
http://dx.doi.org/10.1039/B815002H
67.
67.J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, Biophys. J. 81, 767 (2001).
68.
68.O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux, Proc. Natl. Acad. Sci. U.S.A. 102, 2390 (2005).
http://dx.doi.org/10.1073/pnas.0408482102
69.
69.J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, Proc. Natl. Acad. Sci. U.S.A. 100, 1484 (2003).
http://dx.doi.org/10.1073/pnas.0235407100
70.
70.N. Sniadecki, A. Anguelouch, M. T. Yang, C. M. Lamb, Z. Liu, S. B. Kirschner, Y. Liu, D. H. Reich, and C. S. Chen, Proc. Natl. Acad. Sci. U.S.A. 104, 14553 (2007).
http://dx.doi.org/10.1073/pnas.0611613104
71.
71.Y. C. Kim, S. J. Park, and J. K. Park, Ann. Phys. 133, 1432 (2008).
72.
72.S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Lab Chip 8, 198 (2008);
http://dx.doi.org/10.1039/b715524g
72.G. F. Christopher and S. L. Anna, J. Phys. D 40, R319 (2007).
http://dx.doi.org/10.1088/0022-3727/40/19/R01
73.
73.H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem., Int. Ed. 45, 7336 (2006).
http://dx.doi.org/10.1002/anie.200601554
74.
74.S. L. Roach, H. Song, and R. F. Ismagilov, Anal. Chem. 77, 785 (2005);
74.C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angile, C. H. Schmitz, S. Koester, H. Duan, K. J. Humphry, R. A. Scanga, J. S. Johnson, D. Pisignano, and D. A. Weitz, Lab Chip 8, 1632 (2008).
http://dx.doi.org/10.1039/b806706f
75.
75.F. Mugele and J. C. Baret, J. Phys.: Condens. Matter 17, R705 (2005).
http://dx.doi.org/10.1088/0953-8984/17/28/R01
76.
76.R. B. Fair, Microfluid. Nanofluid. 3, 245 (2007).
http://dx.doi.org/10.1007/s10404-007-0161-8
77.
77.H. Gu, F. Malloggi, S. A. Vanapalli, and F. Mugele, Appl. Phys. Lett. 93, 183507 (2008).
http://dx.doi.org/10.1063/1.3013567
78.
78.F. Malloggi, S. A. Vanapalli, H. Gu, D. van den Ende, and F. Mugele, J. Phys.: Condens. Matter 19, 462101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/46/462101
79.
79.J. F. Edd, D. Di Carlo, K. J. Humphry, S. Koster, D. Irimia, D. A. Weitz, and M. Toner, Lab Chip 8, 1262 (2008);
http://dx.doi.org/10.1039/b805456h
79.M. Chabert and J. L. Viovy, Proc. Natl. Acad. Sci. U.S.A. 105, 3191 (2008);
http://dx.doi.org/10.1073/pnas.0708321105
79.M. Y. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, Anal. Chem. 77, 15391544 (2005).
http://dx.doi.org/10.1021/ac0480850
80.
80.I. Barbuloviv-Nad, H. Yang, P. S. Park, and A. R. Wheeler, Lab Chip 8, 519 (2008).
http://dx.doi.org/10.1039/b717759c
81.
81.Y. Rondelez, G. Tresset, K. V. Tabata, H. Arata, H. Fujita, S. Takeuchi, and H. Noji, Nat. Biotechnol. 23, 361 (2005);
http://dx.doi.org/10.1038/nbt1072
81.S. Y. Jung, Y. Liu, and C. P. Collier, Langmuir 24, 4439 (2008);
81.H. Song and R. F. Ismagilov, J. Am. Chem. Soc. 125, 14613 (2003).
http://dx.doi.org/10.1021/ja0354566
82.
82.M. M. A. E. Claessens, R. Tharmann, K. Kroy, and A. R. Bausch, Nat. Phys. 2, 186 (2006).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3067820
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3067820
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3067820
2009-01-05
2016-12-09

Abstract

Living cells are a fascinating demonstration of nature’s most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax—thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical response of cells. Insights from such studies will have implications in areas such as drug delivery, medicine, tissue engineering, and biomedical diagnostics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3067820.html;jsessionid=m3yjJDM8zvME5E15dmtDYaEc.x-aip-live-06?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3067820&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/1/10.1063/1.3067820&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/1/10.1063/1.3067820'
Right1,Right2,Right3,