Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. Zhu, G. Bao, and N. Wang, Annu. Rev. Biomed. Eng. 2, 189 (2000);
1.G. Bao and S. Suresh, Nature Mater. 2, 715 (2003).
2.S. Kasas and G. Dietler, Pfluegers Arch. Eur. J. Physiol. 456, 13 (2008).
3.S. Suresh, Acta Biomater. 3, 413 (2007).
4.D. E. Discher, E. P. Janmey, and Y. L. Wang, Science 310, 1139 (2005).
5.S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, Nat. Nanotechnol. 2, 780 (2007).
6.G. Y. H. Lee and C. T. Lim, Trends Biotechnol. 25, 111 (2007).
7.G. B. Nash, C. S. Johnson, and H. J. Meiselman, Blood 63, 73 (1984).
8.D. E. Ingber, Ann. Med. 35, 564 (2003).
9.J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Kas, S. Ulvick, and C. Bilby, Biophys. J. 88, 3689 (2005).
10.T. D. Pollard and G. G. Borisy, Cell 112, 453 (2003);
10.A. R. Bausch and K. Kroy, Nat. Phys. 2, 231 (2006).
11.P. F. Davies, Physiol. Rev. 75, 519 (1995).
12.A. S. French, Annu. Rev. Physiol. 54, 135 (1992);
12.P. G. Gillespie and R. G. Walker, Nature (London) 413, 194 (2001);
12.O. P. Hamill and B. Martinac, Physiol. Rev. 81, 685 (2001);
12.P. A. Watson, FASEB J. 5, 2013 (1991);
12.N. Wang, J. P. Butler, and D. E. Ingber, Science 260, 1124 (1993).
13.S. Kumar and P. R. LeDuc, Exp. Mech. 10.1007/s11340-007-9063-7 (2007);
13.P. R. LeDuc and R. M. Bellin, Ann. Biomed. Eng. 34, 102 (2006).
14.P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D. A. Weitz, V. Viasnoff, J. P. Butler, and J. J. Fredberg, Nature Mater. 4, 557 (2005);
14.B. D. Hoffman, G. Massiera, K. M. Van Citters, and J. C. Crocker, Proc. Natl. Acad. Sci. U.S.A. 103, 10259 (2006);
14.K. E. Kasza, A. C. Rowat, J. Y. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, and D. A. Weitz, Curr. Opin. Cell Biol. 19, 101 (2007);
14.X. Trepat, L. H. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, Nature (London) 447, 592 (2007);
14.D. E. Ingber, J. Cell. Sci. 116, 1397 (2003);
14.C. Sultan, D. Stamenovic, and D. E. Ingber, Ann. Biomed. Eng. 32, 520 (2004).
15.K. J. Van Vliet, G. Bao, and S. Suresh, Acta Mater. 51, 5881 (2003);
15.T. P. Lele, J. E. Sero, B. D. Matthews, S. Kumar, S. Xia, M. Montoya-Zavala, T. Polte, D. Overby, N. Wang, and D. E. Ingber, Methods Cell Biol. 83, 443 (2007).
16.D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998);
16.Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
17.M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Science 288, 113 (2000).
18.G. M. Whitesides, Nature (London) 442, 368 (2006);
18.T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005);
18.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
19.J. El-Ali, P. K. Sorger, and K. F. Jensen, Nature (London) 442, 403 (2006);
19.H. Andersson and A. van den Berg, Sens. Actuators B 92, 315 (2003).
20.L. Kim, Y. C. Toh, J. Voldman, H. Yu, Lab Chip 7, 681 (2007).
21.F. Wolbers, P. ter Braak, S. Le Gac, R. Luttge, H. Andersson, I. Vermes, and A. van den Berg, Electrophoresis 27, 5073 (2006).
22.R. Davidsson, A. Boketoft, J. Bristulf, K. Kotarsky, B. Olde, C. Owman, M. Bengtsson, T. Laurell, and J. Emneus, Anal. Chem. 76, 4715 (2004).
23.A. W. Blau and C. M. Ziegler, J. Biochem. Biophys. Methods 50, 15 (2001);
23.J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, Langmuir 20, 11684 (2004);
23.A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, and F. Baudenbacher, Biomed. Microdevices 6, 325 (2004);
23.A. Tourovskaia, X. Figueroa-Masot, and A. Folch, Lab Chip 5, 14 (2005);
23.R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, Anal. Chem. 79, 8557 (2007);
23.N. Futai, W. Gu, J. W. Song, and S. Takayama, Lab Chip 6, 149 (2006).
24.J. Komen, F. Wolbers, H. R. Franke, H. Andersson, I. Vermes, and A. van den Berg, Biomed. Microdevices 10, 727 (2008).
25.H. M. Yu, I. Meyvantsson, I. A. Shkel, and D. J. Beebe, Lab Chip 5, 1089 (2005);
25.P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, Biotechnol. Bioeng. 89, 1 (2005).
26.Y. S. Li, J. H. Haga, and S. Chien, J. Biomech. 38, 1949 (2005).
27.Z. R. Healy, N. H. Lee, X. Q. Gao, M. B. Goldring, P. Talalay, T. W. Kensler, and K. Konstantopoulos, Proc. Natl. Acad. Sci. U.S.A. 102, 14010 (2005).
28.J. Voldman, M. Gray, M. Toner, and M. Schmidt, Anal. Chem. 74, 3984 (2002).
29.M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, Nat. Biotechnol. 23, 83 (2005).
30.J. Hultstrom, O. Manneberg, K. Dopf, H. M. Hertz, H. Brismar, and M. Wiklund, Ultrasound Med. Biol. 33, 145 (2007);
30.H. Li, J. R. Friend, and L. Y. Yeo, Biomaterials 28, 4098 (2007).
31.B. L. Gray, D. K. Lieu, S. D. Collins, R. L. Smith, and A. I. Barakat, Biomed. Microdevices 4, 9 (2002).
32.M. D. Frame and I. H. Sarelius, Microcirculation (Philadelphia) 7, 419 (2000);
32.G. Cinamon and R. Alon, J. Immunol. Methods 273, 53 (2003);
32.M. D. S. Frame, G. B. Chapman, Y. Makino, and I. H. Sarelius, Biorheology 35, 245 (1998);
32.U. Y. Schaff, M. M. Q. Xing, K. K. Lin, N. Pan, N. L. Jeon, and S. I. Simon, Lab Chip 7, 448 (2007);
32.Y. Tanaka, Y. Kikukawa, K. Sato, Y. Sugh, and T. Kitamori, Anal. Sci. 23, 261 (2007);
32.E. W. K. Young, A. R. Wheeler, and C. A. Simmons, Lab Chip 7, 1759 (2007);
32.C. J. Ku, T. D. Oblak, and D. M. Spence, Anal. Chem. 80, 7543 (2008);
32.K. Liu, R. Pitchimani, D. Dang, K. Bayer, T. Harrington, and D. Pappas, Langmuir 24, 5955 (2008);
32.A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, Lab Chip 8, 1292 (2008).
33.J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, Biomed. Microdevices 4, 167 (2002).
34.J. W. Song, W. Gu, N. Futai, K. A. Warner, J. E. Nor, and S. Takayama, Anal. Chem. 77, 3993 (2005).
35.D. Huh, H. Fujioka, Y. C. Tung, N. Futai, R. Paine, J. B. Grotberg, and S. Takayama, Proc. Natl. Acad. Sci. U.S.A. 104, 18886 (2007).
36.M. Antia, T. Herricks, and P. K. Rathod, Cell. Microbiol. 10, 1968 (2008).
37.J. P. Shelby, J. White, K. Ganesan, P. K. Rathod, and D. T. Chiu, Proc. Natl. Acad. Sci. U.S.A. 100, 14618 (2003).
38.J. M. Higgins, D. T. Eddington, S. N. Bhatia, and L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 104, 20496 (2007).
39.M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Lab Chip 8, 1062 (2008).
40.X. Y. Zhu, L. Y. Chu, B. H. Chueh, M. W. Shen, B. Hazarika, N. Phadke, and S. Takayama, Analyst (Cambridge, U.K.) 129, 1026 (2004);
40.J. Atencia and D. J. Beebe, Lab Chip 6, 567 (2006);
40.S. D. Hudson, F. R. Phelan, M. D. Handler, J. T. Cabral, K. B. Migler, and E. J. Amis, Appl. Phys. Lett. 85, 335 (2004);
40.J. S. Lee, R. Dylla-Spears, N. P. Teclemariam, and S. J. Muller, Appl. Phys. Lett. 90, 074103 (2007).
41.L. Yobas, K. C. Tang, S. E. Yong, and E. K. Z. Ong, Lab Chip 8, 660 (2008);
41.W. Gu, X. Y. Zhu, N. Futai, B. S. Cho, and S. Takayama, Proc. Natl. Acad. Sci. U.S.A. 101, 15861 (2004).
42.A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, Science 295, 647 (2002).
43.A. Groisman and V. Steinberg, Nature (London) 410, 905 (2001).
44.X. M. Zhao, Y. N. Xia, and G. M. Whitesides, J. Mater. Chem. 7, 1069 (1997).
45.N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger, Nat. Cell Biol. 3, 466 (2001).
46.I. B. Bischofs and U. S. Schwarz, Proc. Natl. Acad. Sci. U.S.A. 100, 9274 (2003).
47.J. Solon, I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey, Biophys. J. 93, 4453 (2007).
48.A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Cell 126, 677 (2006).
49.D. N. Hohne, J. G. Younger, and M. J. Solomon, “Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms,” Langmuir(submitted).
50.L. G. Griffith and M. A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211 (2006).
51.S. R. Khetani and S. N. Bhatia, Nat. Biotechnol. 26, 120 (2008).
52.R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials 20, 2363 (1999).
53.S. A. Vanapalli, D. Wijnperle, A. van den Berg, F. Mugele, and M. H. G. Duits, “Programmable structured elastomeric membranes as a multifunctional microfluidic tool,” Lab Chip (submitted).
54.S. Takayama, E. Ostuni, P. R. LeDuc, K. Naruse, D. E. Ingber, and G. M. Whitesides, Nature (London) 411, 1016 (2001).
55.B. Kuczenski, P. R. LeDuc, and W. C. Messner, Lab Chip 7, 647 (2007).
56.F. Wang, H. Wang, J. Wang, H. Y. Wang, P. L. Rummel, S. V. Garimella, and C. Lu, Biotechnol. Bioeng. 100, 150 (2008).
57.S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, and G. M. Whitesides, Anal. Chem. 73, 1240 (2001);
57.D. Irimia, D. A. Geba, and M. Toner, Anal. Chem. 78, 3472 (2006);
57.K. Campbell and A. Groisman, Lab Chip 7, 264 (2007).
58.M. Abkarian, M. Faivre, and H. A. Stone, Proc. Natl. Acad. Sci. U.S.A. 103, 538 (2006).
59.N. Bao, Y. H. Zhan, and C. Lu, Anal. Chem. 80, 7714 (2008).
60.A. Drochon, Med. Eng. Phys. 27, 157 (2005);
60.W. G. Lee, H. Bang, H. Yun, J. Lee, J. Park, J. K. Kim, S. Chung, S. Cho, C. Chung, D. C. Han, and J. K. Chang, Lab Chip 7, 516 (2007).
61.N. Korin, A. Bransky, and U. Dinnar, J. Biomech. 40, 2088 (2007);
61.S. C. Gifford, M. G. Frank, J. Derganc, C. Gabel, R. H. Austin, T. Yoshida, and M. W. Bitensky, Biophys. J. 84, 623 (2003).
62.H. Kiesewetter, U. Dauer, P. Teitel, H. Schmidschonbein, and R. Trapp, Biorheology 19, 737 (1982).
63.R. S. Frank and R. M. Hochmuth, J. Biomech. 109, 103 (1987);
63.R. S. Frank and M. A. Tsai, J. Biomech. 112, 277 (1990).
64.A. Groisman, M. Enzelberger, and S. R. Quake, Science 300, 955 (2003).
65.S. A. Vanapalli, D. van den Ende, M. H. G. Duits, and F. Mugele, Appl. Phys. Lett. 90, 114109 (2007).
66.S. A. Vanapalli, A. G. Banpurkar, D. van den Ende, M. H. G. Duits, and F. Mugele, “Hydrodynamic resistance of single confined moving drops in rectangular microchannelsLab Chip10.1039/B815002H.
67.J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, Biophys. J. 81, 767 (2001).
68.O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Siberzan, and B. Ladoux, Proc. Natl. Acad. Sci. U.S.A. 102, 2390 (2005).
69.J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, Proc. Natl. Acad. Sci. U.S.A. 100, 1484 (2003).
70.N. Sniadecki, A. Anguelouch, M. T. Yang, C. M. Lamb, Z. Liu, S. B. Kirschner, Y. Liu, D. H. Reich, and C. S. Chen, Proc. Natl. Acad. Sci. U.S.A. 104, 14553 (2007).
71.Y. C. Kim, S. J. Park, and J. K. Park, Ann. Phys. 133, 1432 (2008).
72.S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Lab Chip 8, 198 (2008);
72.G. F. Christopher and S. L. Anna, J. Phys. D 40, R319 (2007).
73.H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem., Int. Ed. 45, 7336 (2006).
74.S. L. Roach, H. Song, and R. F. Ismagilov, Anal. Chem. 77, 785 (2005);
74.C. Holtze, A. C. Rowat, J. J. Agresti, J. B. Hutchison, F. E. Angile, C. H. Schmitz, S. Koester, H. Duan, K. J. Humphry, R. A. Scanga, J. S. Johnson, D. Pisignano, and D. A. Weitz, Lab Chip 8, 1632 (2008).
75.F. Mugele and J. C. Baret, J. Phys.: Condens. Matter 17, R705 (2005).
76.R. B. Fair, Microfluid. Nanofluid. 3, 245 (2007).
77.H. Gu, F. Malloggi, S. A. Vanapalli, and F. Mugele, Appl. Phys. Lett. 93, 183507 (2008).
78.F. Malloggi, S. A. Vanapalli, H. Gu, D. van den Ende, and F. Mugele, J. Phys.: Condens. Matter 19, 462101 (2007).
79.J. F. Edd, D. Di Carlo, K. J. Humphry, S. Koster, D. Irimia, D. A. Weitz, and M. Toner, Lab Chip 8, 1262 (2008);
79.M. Chabert and J. L. Viovy, Proc. Natl. Acad. Sci. U.S.A. 105, 3191 (2008);
79.M. Y. He, J. S. Edgar, G. D. M. Jeffries, R. M. Lorenz, J. P. Shelby, and D. T. Chiu, Anal. Chem. 77, 15391544 (2005).
80.I. Barbuloviv-Nad, H. Yang, P. S. Park, and A. R. Wheeler, Lab Chip 8, 519 (2008).
81.Y. Rondelez, G. Tresset, K. V. Tabata, H. Arata, H. Fujita, S. Takeuchi, and H. Noji, Nat. Biotechnol. 23, 361 (2005);
81.S. Y. Jung, Y. Liu, and C. P. Collier, Langmuir 24, 4439 (2008);
81.H. Song and R. F. Ismagilov, J. Am. Chem. Soc. 125, 14613 (2003).
82.M. M. A. E. Claessens, R. Tharmann, K. Kroy, and A. R. Bausch, Nat. Phys. 2, 186 (2006).

Data & Media loading...


Article metrics loading...



Living cells are a fascinating demonstration of nature’s most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax—thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical response of cells. Insights from such studies will have implications in areas such as drug delivery, medicine, tissue engineering, and biomedical diagnostics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd