1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/1/10.1063/1.3086600
1.
1.R. M. Schultz and C. J. Williams, Science 296, 2188 (2002).
http://dx.doi.org/10.1126/science.1071741
2.
2.R. S. Suh, N. Phadke, D. A. Ohl, S. Takayama, and G. D. Smith, Hum. Reprod. Update 9, 451 (2003).
http://dx.doi.org/10.1093/humupd/dmg037
3.
3.L. J. Kricka, I. Faro, S. Heyner, W. T. Garside, G. Fitzpatrick, G. McKinnon, J. Ho, and P. Wilding, J. Pharm. Biomed. Anal. 15, 1443 (1997).
http://dx.doi.org/10.1016/S0731-7085(96)02046-8
4.
4.N. Tsukada, K. -i. Kudoh, M. Budiman, A. Yamamoto, T. Higuchi, M. Kobayashi, K. Sato, K. Oishi, and K. Iida, J. Mamm. Ova Res. 18, 106 (2001).
http://dx.doi.org/10.1274/jmor.18.106
5.
5.P. Gaynor, D. Wells, and B. Oback, Med. Biol. Eng. Comput. 43, 150 (2005).
http://dx.doi.org/10.1007/BF02345137
6.
6.H. C. Zeringue, J. J. Rutledge, and D. J. Beebe, Lab Chip 5, 86 (2005).
http://dx.doi.org/10.1039/b316494m
7.
7.J. Park, S. -H. Jung, Y. -H. Kim, B. Kim, S. -K. Lee, and J. -O. Park, Lab Chip 5, 91 (2005).
http://dx.doi.org/10.1039/b404990j
8.
8.S. G. Clark, K. Haubert, D. J. Beebe, C. E. Ferguson, and M. B. Wheeler, Lab Chip 5, 1229 (2005).
http://dx.doi.org/10.1039/b504397m
9.
9.Z. Sadani, B. Wacogne, C. Pieralli, C. Roux, and T. Gharbi, Sens. Actuators A Phys. 121, 364 (2005).
http://dx.doi.org/10.1016/j.sna.2005.03.004
10.
10.S. Raty, E. M. Walters, J. Davis, H. Zeringue, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, Lab Chip 4, 186 (2004).
http://dx.doi.org/10.1039/b316437c
11.
11.I. K. Glasgow, H. C. Zeringue, D. J. Beebe, C. Seong-Jun, J. T. Lyman, N. G. Chan, and M. B. Wheeler, IEEE Trans. Biomed. Eng. 48, 570 (2001).
http://dx.doi.org/10.1109/10.918596
12.
12.R. Zeggari, B. Wacogne, C. Pieralli, C. Roux, and T. Gharbi, Laser Phys. 16, 294 (2006).
http://dx.doi.org/10.1134/S1054660X06020150
13.
13.W. Choi, J. -S. Kim, D. -H. Lee, K. -K. Lee, D. -B. Koo, and J. -K. Park, Biomed. Microdevices 10, 337 (2008).
http://dx.doi.org/10.1007/s10544-007-9153-4
14.
14.P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature (London) 436, 370 (2005).
http://dx.doi.org/10.1038/nature03831
15.
15.W. Choi, S. -H. Kim, J. Jang, and J. -K. Park, Microfluid. Nanofluid. 3, 217 (2007).
http://dx.doi.org/10.1007/s10404-006-0124-5
16.
16.H. Hwang, Y. -J. Choi, W. Choi, S. -H. Kim, J. Jang, and J. -K. Park, Electrophoresis 29, 1203 (2008).
http://dx.doi.org/10.1002/elps.200700415
17.
17.P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, J. Microelectromech. Syst. 17, 525 (2008).
http://dx.doi.org/10.1109/JMEMS.2008.916342
18.
18.H. Hwang and J. -K. Park, Lab Chip 9, 199 (2009).
http://dx.doi.org/10.1039/b811740c
19.
19.H. Hwang, J. -J. Kim, and J. -K. Park, J. Phys. Chem. B 112, 9903 (2008).
http://dx.doi.org/10.1021/jp803596r
20.
20.T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 1995).
21.
21.W. M. Arnold, R. K. Schmutzler, A. G. Schmutzler, H. van der Ven, S. Al-Hasani, D. Krebs, and U. Zimmermann, Biochim. Biophys. Acta 905, 454 (1987).
http://dx.doi.org/10.1016/0005-2736(87)90475-5
22.
22.S. Archer, H. Morgan, and F. J. Rixon, Biophys. J. 76, 2833 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77437-0
23.
23.A. Docoslis and P. Alexandridis, Electrophoresis 23, 2174 (2002).
http://dx.doi.org/10.1002/1522-2683(200207)23:14<2174::AID-ELPS2174>3.0.CO;2-3
24.
24.P. Wanichapichart, S. Bunthawin, A. Kaewpaiboon, and K. Kanchanapoom, ScienceAsia 28, 113 (2002).
http://dx.doi.org/10.2306/scienceasia1513-1874.2002.28.113
25.
25.H. Hwang, Y. Oh, J. -J. Kim, W. Choi, S. -H. Kim, J. Jang, and J. -K. Park, Biochip J. 1, 234 (2007).
26.
26.H. Hwang, Y. Oh, J. -J. Kim, W. Choi, J. -K. Park, S. -H. Kim, and J. Jang, Appl. Phys. Lett. 92, 024108 (2008).
http://dx.doi.org/10.1063/1.2834901
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3086600
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Dielectric model of protoplast for spherical cell. The dielectric permittivity and electric conductivity are represented. The subscripts , , and mb indicate the cytoplasm, the medium, and the membrane, respectively. Calculated variation in according to the ac frequency at different conductivities (b) of the external medium (, 0.13, and 1.3 mS/cm; ) and (c) of the cytoplasm (, 1, and 5 mS/cm; ). The fixed parameters are , capacitance, , , , and .

Image of FIG. 2.

Click to view

FIG. 2.

Cross-section schematic (not to scale) of two distinct manipulation modes: (a) Gravity and (b) antigravity modes based on the gravity effect and optically induced positive DEP in the optoelectrofluidic device. Under the antigravity mode, the oocytes exhibit vertical positive DEP force in the opposite direction of the gravity. Therefore, the friction force becomes weaker due to the reduced net vertical force, resulting in the effective manipulation of normal oocytes.

Image of FIG. 3.

Click to view

FIG. 3.

Experimental setup of the LCD-based optoelectrofluidic platform for oocyte discrimination in the antigravity manipulation mode. At the gravity mode, the optoelectrofluidic device is turned upside down without any modification of other components.

Image of FIG. 4.

Click to view

FIG. 4.

The simulated electric field distribution formed by an optically induced virtual electrode (yellow region) under the antigravity mode. An ac signal of 10 V at 1 MHz is assumed to be applied. The estimated moving direction of the oocytes by the optically induced positive DEP is also represented.

Image of FIG. 5.

Click to view

FIG. 5.

Measured velocity of normal and abnormal oocytes under two manipulation modes—the gravity and the antigravity modes. The operating voltage was 10 V bias at 1 MHz.

Image of FIG. 6.

Click to view

FIG. 6.

Captured images of the discrimination of normal and abnormal oocytes using an optical line scanning from left to right under the antigravity manipulation mode. Samples were manipulated under the voltage of 10 V at 1 MHz. When the voltage was applied and the LCD image was moved, only the normal oocyte were manipulated in the moving direction of image pattern, while the abnormal oocytes remained at the initial position.

Image of FIG. 7.

Click to view

FIG. 7.

Calculated net vertical force, which is the summation of the gravity and the vertical positive DEP force, acting on the oocyte, which is assumed to be positioned directly above the electrode edges according to (a) the vertical position of the oocyte and (b) the applied voltage. The gap height of liquid chamber was and the ac frequency was 1 MHz.

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3086600
2009-02-17
2014-04-16

Abstract

We present a method to discriminate normal oocytes in an optoelectrofluidic platform based on the optically induced positive dielectrophoresis(DEP) for in vitro fertilization. By combining the gravity with a pulling-up DEP force that is induced by dynamic image projected from a liquid crystal display, the discrimination performance could be enhanced due to the reduction in friction force acting on the oocytes that are relatively large and heavy cells being affected by the gravity field. The voltage condition of 10 V bias at 1 MHz was applied for moving normal oocytes. The increased difference of moving velocity between normal and starved abnormal oocytes allows us to discriminate the normal ones spontaneously under the moving image pattern. This approach can be useful to develop an automatic and interactive selection tool of fertilizable oocytes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3086600.html;jsessionid=15v7tgs0incee.x-aip-live-02?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3086600&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3086600
10.1063/1.3086600
SEARCH_EXPAND_ITEM