Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Vilkner, D. Janasek, and A. Manz, Anal. Chem. 76, 3373 (2004).
2.D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, Anal. Chem. 74, 2623 (2002).
3.C. D. Chin, V. Linder, and S. K. Sia, Lab Chip 7, 41 (2007).
4.D. Figeys and D. Pinto, Anal. Chem. 72, 330A (2000).
5.F. C. Huang, C. S. Liao, and G. B. Lee, Electrophoresis 27, 3297 (2006).
6.Y. Yamaguchi, D. Ogura, K. Yamashita, M. Miyazaki, H. Nakamura, and H. Maeda, Talanta 68, 700 (2006).
7.V. Srinivasan, V. K. Pamula, and R. B. Fair, Anal. Chim. Acta 507, 145 (2004).
8.J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, and J. Emnéus, Anal. Chem. 74, 2994 (2002).
9.J. Yakovleva, R. Davidsson, M. Bengtsson, T. Laurell, and J. Emnéus, Biosens. Bioelectron. 19, 21 (2003).
10.R. Davidsson, A. Boketoft, J. Bristulf, K. Kotarsky, B. Olde, C. Owman, M. Bengtsson, T. Laurell, and J. Emnéus, Anal. Chem. 76, 4715 (2004).
11.J. Q. Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, Lab Chip 8, 1265 (2008).
12.H. H. Schaumburg, R. Byck, R. Gerstl, and J. H. Mashman, Science 163, 826 (1969).
13.S. N. Dijk, P. T. Francis, G. C. Stratmann, and D. M. Bowen, J. Neurochem. 65, 2165 (1995).
14.J. Ulas, F. B. Weihmuller, L. C. Brunner, J. N. Joyce, J. F. Marshall, and C. W. Cotman, J. Neurosci. 14, 6317 (1994).
15.O. M. Schuvailo, O. O. Soldatkin, A. Lefebvre, R. Cespuglio, and A. P. Soldatkin, Anal. Chim. Acta 573–574, 110 (2006).
16.K. Hayashi, R. Kurita, T. Horiuchi, and O. Niwa, Biosens. Bioelectron. 18, 1249 (2003).
17.T. Yao, Y. Nanjyo, T. Tanaka, and H. Nishino, Electroanalysis 13, 1361 (2001).<1361::AID-ELAN1361>3.0.CO;2-D
18.A. Collins, E. Mikeladze, M. Bengtsson, M. Kokaia, T. Laurell, and E. Csöregi, Electroanalysis 13, 425 (2001).<425::AID-ELAN425>3.0.CO;2-5
19.W. Khampha, V. Meevootisom, and S. Wiyakrutta, Anal. Chim. Acta 520, 133 (2004).
20.W. Khampha, J. Yakovleva, D. Isarangkul, S. Wiyakrutta, V. Meevootisom, and J. Emnéus, Anal. Chim. Acta 518, 127 (2004).
21.P. Kongsaeree, C. Samanchart, P. Laowanapiban, S. Wiyakrutta, and V. Meevootisom, Acta Crystallogr., Sect. D: Biol. Crystallogr. 59, 953 (2003).
22.S. Wiyakrutta and V. Meevootisom, J. Biotechnol. 55, 193 (1997).
23.C. Melander, D. Momcilovic, C. Nilsson, M. Bengtsson, H. Schagerlöf, F. Tjerneld, T. Laurell, C. T. Reimann, and L. Gorton, Anal. Chem. 77, 3284 (2005).
24.R. Davidsson, B. Johansson, V. Passoth, M. Bengtsson, T. Laurell, and J. Emnéus, Lab Chip 4, 488 (2004).
25.R. Davidsson, F. Genin, M. Bengtsson, T. Laurell, and J. Emnéus, Lab Chip 4, 481 (2004).
26.K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem. 72, 1144 (2000).
27.J. Wang, M. Pumera, M. P. Chatrathi, A. Escarpa, M. Musameh, G. Collins, A. Mulchandani, Y. Lin, and K. Olsen, Anal. Chem. 74, 1187 (2002).
28.T. Laurell, J. Drott, L. Rosengren, and K. Lindström, Sens. Actuators B 31, 161 (1996).
29.T. Laurell, J. Drott, and L. Rosengren, Biosens. Bioelectron. 10, 289 (1995).
30.H. H. Weetall, Methods Enzymol. 44, 134 (1976).
31.M. M. Bradford, Anal. Biochem. 72, 248 (1976).
32.L. Jinn-Nan, I-N. Chang, J. D. Andrade, J. N. Herron, and D. A. Christensen, J. Chromatogr. A 542, 41 (1991).
33.M. Malmsten, B. Lassen, K. Holmberg, V. Thomas, and G. Quash, J. Colloid Interface Sci. 177, 70 (1996).
34.R. M. Pena, J. L. F. C. Lima, and M. L. M. F. S. Saraiva, Anal. Chim. Acta 514, 37 (2004).

Data & Media loading...


Article metrics loading...



Two microfluidic systems have been developed for specific analysis of -glutamate in food based on substrate recycling fluorescence detection. -glutamate dehydrogenase and a novel enzyme,-phenylglycine aminotransferase, were covalently immobilized on (i) the surface of silicon microchips containing 32 porous flow channels of depth and width and (ii) polystyrene Poros™ beads with a particle size of . The immobilized enzymes recycle -glutamate by oxidation to 2-oxoglutarate followed by the transfer of an amino group from -4-hydroxyphenylglycine to 2-oxoglutarate. The reaction was accompanied by reduction of nicotinamide adenine dinucleotide () to NADH, which was monitored by fluorescence detection . First, the microchip-based system, -glutamate was detected within a range of 3.1–50.0 mM. Second, to be automatically determined, sequential injection analysis (SIA) with the bead-based system was investigated. The bead-based system was evaluated by both flow injection analysis and SIA modes, where good reproducibility for -glutamate calibrations was obtained (relative standard deviation of 3.3% and 6.6%, respectively). In the case of SIA, the beads were introduced and removed from the microchip automatically. The immobilized beads could be stored in a 20% glycerol and 0.5 mM ethylenediaminetetraacetic acid solution maintained at a of 7.0 using a phosphate buffer for at least 15 days with 72% of the activity remaining. The bead-based system demonstrated high selectivity, where -glutamate recoveries were between 91% and 108% in the presence of six other -amino acids tested.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd