Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/1/10.1063/1.3098963
1.
1.D. R. Reyes, D. Iossifidis, P. -A. Auroux, and A. Manz, Anal. Chem. 74, 2623 (2002).
http://dx.doi.org/10.1021/ac0202435
2.
2.J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, Electrophoresis 23, 3461 (2002).
http://dx.doi.org/10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8
3.
3.L. Chen, A. Manz, and P. J. R. Day, Lab Chip 7, 1713 (2007).
4.
4.G. M. Whitesides, Nature (London) 442, 368 (2006).
http://dx.doi.org/10.1038/nature05058
5.
5.N. -T. Nguyen and Z. Wu, J. Micromech. Microeng. 15, R1 (2005).
http://dx.doi.org/10.1088/0960-1317/15/2/R01
6.
6.J. Yeom, C. R. Field, B. Bae, R. I. Masel, and M. A. Shannon, J. Micromech. Microeng. 18, 12500 (2008).
7.
7.P. Woias, Sens. Actuators B 105, 28 (2005).
http://dx.doi.org/10.1016/S0925-4005(04)00108-X
8.
8.K. W. Oh and C. H. Ahn, J. Micromech. Microeng. 16, R13 (2006).
http://dx.doi.org/10.1088/0960-1317/16/5/R01
9.
9.G. J. M. Bruin, Electrophoresis 21, 3931 (2000).
http://dx.doi.org/10.1002/1522-2683(200012)21:18<3931::AID-ELPS3931>3.0.CO;2-M
10.
10.N. Pamme, Lab Chip 12, 1644 (2007).
11.
11.M. A. Schwarz and P. C. Hauser, Lab Chip 1, 1 (2001).
http://dx.doi.org/10.1039/b103795c
12.
12.Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, and A. Wixforth, Lab Chip 5, 308 (2005).
http://dx.doi.org/10.1039/b412712a
13.
13.T. Stroink, M. C. Ortiz, A. Bult, H. Lingeman, G. J. De Jong, and W. J. M. Underberg, J. Chromatogr., B 817, 49 (2005).
14.
14.X. Lu, W. H. Zhang, Z. L. Wang, and J. K. Cheng, Anal. Chim. Acta 510, 127 (2004).
http://dx.doi.org/10.1016/j.aca.2004.01.014
15.
15.L. J. Kricka and P. Wilding, Anal. Bioanal. Chem. 377, 820 (2003).
http://dx.doi.org/10.1007/s00216-003-2144-2
16.
16.P. Watts and S. J. Haswell, Chem. Soc. Rev. 34, 235 (2005).
http://dx.doi.org/10.1039/b313866f
17.
17.D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, Anal. Chem. 64, 1926 (1992).
http://dx.doi.org/10.1021/ac00041a030
18.
18.D. J. Harrison, K. Fluri, K. Seiler, Z. Fan, C. S. Effenhauser, and A. Manz, Science 261, 895 (1993).
http://dx.doi.org/10.1126/science.261.5123.895
19.
19.A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, H. Miyagi, and K. Sato, Sens. Actuators B 1, 249 (1990).
http://dx.doi.org/10.1016/0925-4005(90)80210-Q
20.
20.Y. Xia and G. Whitesides, Angew. Chem., Int. Ed. 37, 550 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.3.CO;2-7
21.
21.X. Zhao, Y. Xia, and G. Whitesides, J. Mater. Chem. 7, 1069 (1997).
http://dx.doi.org/10.1039/a700145b
22.
22.Y. Xia and G. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
23.
23.M. Witek, M. Hupert, D. Park, K. Fears, M. Murphy, and S. Soper, Anal. Chem. 80, 3483 (2008).
http://dx.doi.org/10.1021/ac8002352
24.
24.S. Metz, R. Holzer, and P. Renaud, Lab Chip 1, 29 (2001).
http://dx.doi.org/10.1039/b103896f
25.
25.A. Folch, S. Mezzour, M. During, O. Hurtado, M. Toner, and R. Muller, Biomed. Microdevices 2, 207 (2000).
26.
26.J. Wang, M. Pumera, M. Chatrathi, A. Escarpa, R. Konrad, A. Griebel, W. Dorner, and H. Lowe, Electrophoresis 23, 596 (2002).
http://dx.doi.org/10.1002/1522-2683(200202)23:4<596::AID-ELPS596>3.0.CO;2-C
27.
27.L. Locascio, C. Perso, and C. Lee, J. Chromatogr., A 857, 275 (1999).
http://dx.doi.org/10.1016/S0021-9673(99)00774-8
28.
28.D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, Anal. Chem. 70, 4974 (1998).
http://dx.doi.org/10.1021/ac980656z
29.
29.S. Quake and A. Scherer, Science 290, 1536 (2000).
http://dx.doi.org/10.1126/science.290.5496.1536
30.
30.M. Unger, H. Chou, T. Thorsen, A. Scherer, and S. Quake, Science 288, 113 (2000).
http://dx.doi.org/10.1126/science.288.5463.113
31.
31.X. Niu, S. Peng, L. Liu, W. Wen, and P. Sheng, Adv. Mater. (Weinheim, Ger.) 19, 2682 (2007).
http://dx.doi.org/10.1002/adma.200602515
32.
32.J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. Schueller, and G. M. Whitesides, Electrophoresis 21, 27 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.3.CO;2-3
33.
33.C. C. Lee, G. D. Sui, A. Elizarov, C. Y. J. Shu, Y. S. Shin, A. N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H. C. Kolb, O. N. Witte, N. Satyamurthy, J. R. Heath, M. E. Phelps, S. R. Quake, and H. R. Tseng, Science 310, 1793 (2005).
http://dx.doi.org/10.1126/science.1118919
34.
34.K. A. Shaikh, K. S. Ryu, E. D. Goluch, J. M. Nam, J. W. Liu, S. Thaxton, T. N. Chiesl, A. E. Barron, Y. Lu, C. A. Mirkin, and C. Liu, Proc. Natl. Acad. Sci. U.S.A. 102, 9745 (2005).
http://dx.doi.org/10.1073/pnas.0504082102
35.
35.G. Chen, F. Svec, and D. R. Knapp, Lab Chip 8, 1198 (2008).
http://dx.doi.org/10.1039/b803293a
36.
36.C. Frevert, G. Boggy, T. Keenan, and A. Folch, Lab Chip 6, 849 (2006).
http://dx.doi.org/10.1039/b515560f
37.
37.X. Niu, W. Wen, and Y. Li, Appl. Phys. Lett. 87, 243501 (2005).
http://dx.doi.org/10.1063/1.2140070
38.
38.W. Wen, X. Huang, S. Yang, K. Lu, and P. Sheng, Nature Mater. 2, 727 (2003).
http://dx.doi.org/10.1038/nmat993
39.
39.N. Nguyen and T. Truong, Sens. Actuators B 97, 137 (2004).
http://dx.doi.org/10.1016/S0925-4005(03)00521-5
40.
40.C. -H. Wang and G. -B. Lee, J. Micromech. Microeng. 16, 341 (2006).
41.
41.J. Atencia and D. J. Beebe, Lab Chip 4, 598 (2004).
42.
42.P. Wang, Z. Chen, and H. -C. Chang, Sens. Actuators B 113, 500 (2006).
http://dx.doi.org/10.1016/j.snb.2005.03.102
43.
43.D. J. Laser and J. G. Santiago, J. Micromech. Microeng. 14, R35 (2004).
http://dx.doi.org/10.1088/0960-1317/14/6/R01
44.
44.D. B. Weibel, A. C. Siegel, A. Lee, A. H. George, and G. M. Whitesides, Lab Chip 7, 1832 (2007).
45.
45.L. Liu, X. Chen, X. Niu, W. Wen, and P. Sheng, Appl. Phys. Lett. 89, 083505 (2006).
http://dx.doi.org/10.1063/1.2337877
46.
46.A. Stroock, S. Dertinger, A. Ajdari, I. Mezić, H. Stone, and G. Whitesides, Science 295, 647 (2002).
http://dx.doi.org/10.1126/science.1066238
47.
47.C. Lee, G. Lee, J. Lin, F. Huang, and C. Liao, J. Micromech. Microeng. 15, 1215 (2005).
http://dx.doi.org/10.1088/0960-1317/15/6/011
48.
48.R. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, Anal. Chem. 76, 1824 (2004).
http://dx.doi.org/10.1021/ac0353029
49.
49.R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, J. Appl. Phys. 104, 014910 (2008).
http://dx.doi.org/10.1063/1.2951467
50.
50.K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, Lab Chip 4, 608 (2004).
http://dx.doi.org/10.1039/b403305a
51.
51.F. Okkels and P. Tabeling, Phys. Rev. Lett. 92, 038301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.038301
52.
52.X. Niu and Y. Lee, J. Micromech. Microeng. 13, 454 (2003).
http://dx.doi.org/10.1088/0960-1317/13/3/316
53.
53.X. Niu, L. Liu, W. Wen, and P. Sheng, Phys. Rev. Lett. 97, 044501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.044501
54.
54.H. Arata, F. Gillot, T. Nojima, T. Fujii, and H. Fujita, Lab Chip 8, 1436 (2008).
http://dx.doi.org/10.1039/b806749j
55.
55.G. Hu, Q. Xiang, R. Fu, B. Xu, R. Venditti, and D. Li, Anal. Chim. Acta 557, 146 (2006).
http://dx.doi.org/10.1016/j.aca.2005.10.021
56.
56.H. Cong and T. Pan, Adv. Funct. Mater. 18, 1912 (2008).
http://dx.doi.org/10.1002/adfm.200701437
57.
57.L. Liu, S. Peng, W. Wen, and P. Sheng, Appl. Phys. Lett. 90, 213508 (2007).
http://dx.doi.org/10.1063/1.2742781
58.
58.M. Jaeger, T. Mueller, and T. Schnelle, J. Phys. D 40, 95 (2007).
http://dx.doi.org/10.1088/0022-3727/40/1/S14
59.
59.W. Song and J. Lichtenberg, J. Micromech. Microeng. 15, 1425 (2005).
http://dx.doi.org/10.1088/0960-1317/15/8/007
60.
60.L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, Appl. Phys. Lett. 87, 184105 (2005).
http://dx.doi.org/10.1063/1.2123384
61.
61.A. Jackson and A. Gossard, J. Cryst. Growth 301-302, 105 (2007).
62.
62.M. Roper, C. Easley, L. Legendre, J. Humphrey, and J. Landers, Anal. Chem. 79, 1294 (2007).
http://dx.doi.org/10.1021/ac0613277
63.
63.L. Liu, S. Peng, W. Wen, and P. Sheng, Appl. Phys. Lett. 91, 093513 (2007).
http://dx.doi.org/10.1063/1.2776848
64.
64.L. R. Huang, J. O. Tegenfeldt, J. Kraeft, J. C. Sturm, R. H. Austin, and E. C. Cox, Nat. Biotechnol. 20, 1048 (2002).
http://dx.doi.org/10.1038/nbt733
65.
65.X. Yang, G. Jenkins, J. Franzke, and A. Manz, Lab Chip 5, 764 (2005).
http://dx.doi.org/10.1039/b502121a
66.
66.S. Sengupta, D. A. Battigelli, and H. -C. Chang, Lab Chip 6, 682 (2006).
http://dx.doi.org/10.1039/b516274b
67.
67.J. P. Kutter, Trends Analyt. Chem. 19, 352 (2000).
68.
68.N. H. Moreira, A. L. J. Almeida, M. H. O. Piazzeta, D. P. Jesus, A. Deblire, Â. L. Gobbi, and J. A. F. Silva, Lab Chip 9, 115 (2009).
69.
69.A. Y. Fu, H. Chou, C. Spence, F. H. Arnold, and S. R. Quake, Anal. Chem. 74, 2451 (2002).
http://dx.doi.org/10.1021/ac0255330
70.
70.A. J. deMello, Nature (London) 442, 394 (2006).
http://dx.doi.org/10.1038/nature05062
71.
71.X. Niu, M. Zhang, S. Peng, W. Wen, and P. Sheng, Biomicrofluidics 1, 044101 (2007).
http://dx.doi.org/10.1063/1.2795392
72.
72.M. Fuerstman, P. Garstecki, and G. Whitesides, Science 315, 828 (2007).
http://dx.doi.org/10.1126/science.1134514
73.
73.H. Willaime, V. Barbier, L. Kloul, S. Maine, and P. Tabeling, Phys. Rev. Lett. 96, 054501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054501
74.
74.L. Hung, K. Choi, W. Tseng, Y. Tan, K. Shea, and A. Lee, Lab Chip 6, 174 (2006).
http://dx.doi.org/10.1039/b513908b
75.
75.J. W. Hong, V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, Nat. Biotechnol. 22, 435 (2004).
http://dx.doi.org/10.1038/nbt951
76.
76.A. Dodge, E. Brunet, S. Chen, J. Goulpeau, V. Labas, J. Vinh, and P. Tabeling, Analyst 131, 1122 (2006).
77.
77.I. -F. Cheng, H. -C. Chang, D. Hou, and H. -C. Chang, Biomicrofluidics 1, 021503 (2007).
http://dx.doi.org/10.1063/1.2723669
78.
78.L. Liu, W. Cao, J. Wu, W. Wen, D. C. Chang, and P. Sheng, Biomicrofluidics 2, 034103 (2008).
http://dx.doi.org/10.1063/1.2966453
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3098963
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3098963
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3098963
2009-03-23
2016-12-10

Abstract

This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conductingcomposites and their applications in microfluidic chipfabrication. Owing to their good electrical conductivity and rubberlike elasticcharacteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3098963.html;jsessionid=fjL6A8cZX_Yr_cNwyd1QiDl9.x-aip-live-03?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3098963&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/1/10.1063/1.3098963&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/1/10.1063/1.3098963'
Right1,Right2,Right3,