Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/1/10.1063/1.3108462
1.
1.J. M. Ottino and S. Wiggins, Science 305, 485 (2004).
http://dx.doi.org/10.1126/science.1099343
2.
2.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
3.
3.T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.977
4.
4.N. -T. Nguyen and Z. Wu, J. Micromech. Microeng. 15, R1 (2005).
http://dx.doi.org/10.1088/0960-1317/15/2/R01
5.
5.J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin, Phys. Rev. Lett. 80, 3863 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3863
6.
6.A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and A. Ajdari, J. Anal. Chem. USSR 74, 5306 (2002).
7.
7.H. Song and R. F. Ismagilov, J. Am. Chem. Soc. 125, 14613 (2003).
http://dx.doi.org/10.1021/ja0354566
8.
8.T. Burghelea, E. Segre, I. Bar-Joseph, A. Groisman, and V. Steinberg, Phys. Rev. E 69, 066305 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.066305
9.
9.A. Groisman and V. Steinberg, Nature (London) 410, 905 (2001).
http://dx.doi.org/10.1038/35073524
10.
10.R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987), Vol. 1.
11.
11.R. E. Evans and K. Walter, J. Non-Newtonian Fluid Mech. 20, 11 (1986).
http://dx.doi.org/10.1016/0377-0257(86)80013-1
12.
12.R. E. Evans and K. Walter, J. Non-Newtonian Fluid Mech. 32, 95 (1989).
http://dx.doi.org/10.1016/0377-0257(89)85043-8
13.
13.L. E. Rodd, T. P. Scott, D. V. Boger, J. J. Cooper-White, and G. H. McKinley, J. Non-Newtonian Fluid Mech. 129, 1 (2005).
http://dx.doi.org/10.1016/j.jnnfm.2005.04.006
14.
14.A. Groisman, M. Enzelberger, and S. R. Quake, Science 300, 955 (2003).
http://dx.doi.org/10.1126/science.1083694
15.
15.H. Y. Gan, Y. C. Lam, and N. -T. Nguyen, Appl. Phys. Lett. 88, 224103 (2006).
http://dx.doi.org/10.1063/1.2206682
16.
16.H. Y. Gan, Y. C. Lam, N-T. Nguyen, K. C. Tam, and C. Yang, Microfluid. Nanofluid. 3, 101 (2007).
17.
17.N. R. Washburn, C. G. Simon, Jr., A. Tona, H. M. Elgendy, A. Karim, and E. J. Amis, J. Biomed. Mater. Res. 60, 20 (2002).
http://dx.doi.org/10.1002/jbm.10049
18.
18.H. Y. Gan, Ph.D. thesis, Singapore NTU, 2008.
19.
19.H. Y. Gan and Y. C. Lam, Viscoelasticity—Encyclopedia of Micro- and Nano-Fluidics (Springer, Berlin, 2008).
20.
20.A. Einstein, Investigation on the Theory of the Brownian Movement (Dover, New York, 1956).
21.
21.Z. Wu, N. -T. Nguyen, and X. Huang, J. Micromech. Microeng. 14, 604 (2004).
http://dx.doi.org/10.1088/0960-1317/14/4/022
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3108462
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3108462
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3108462
2009-03-30
2016-12-08

Abstract

We exploited the viscoelasticity of biocompatible dilute polymeric solutions, namely, dilute poly(ethylene oxide) solutions, to significantly enhance mixing in microfluidic devices at a very small Reynolds number, i.e., , but large Peclet and elasticity numbers. With an abrupt contraction microgeometry (8:1 contraction ratio), two different dilute poly(ethylene oxide) solutions were successfully mixed with a short flow length at a relatively fast mixing time of . Microparticle image velocimetry was employed in our investigations to characterize the flow fields. The increase in velocity fluctuation with an increase in flow rate and Deborah number indicates the increase in viscoelastic flow instability.Mixing efficiency was characterized by fluorescent concentration measurements. Our results showed that enhanced mixing can be achieved through viscoelastic flow instability under situations where molecular-diffusion and inertia effects are negligible. This approach bypasses the laminar flow limitation, usually associated with a low Reynolds number, which is not conducive to mixing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3108462.html;jsessionid=aF5yDoIWl0RjkYS4Yg6UFKfM.x-aip-live-02?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3108462&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/1/10.1063/1.3108462&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/1/10.1063/1.3108462'
Right1,Right2,Right3,