1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/1/10.1063/1.3109686
1.
1.M. Joanicot and A. Ajdari, Science 309, 887 (2005).
http://dx.doi.org/10.1126/science.1112615
2.
2.G. Cristobal, L. Arbouet, F. Sarrazin, D. Talaga, J. -L. Brunel, M. Joanicot, and L. Servant, Lab Chip 6, 1140 (2006).
http://dx.doi.org/10.1039/b602702d
3.
3.D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir 19, 9127 (2003).
http://dx.doi.org/10.1021/la030090w
4.
4.D. Dendukuri, K. Tsoi, T. A. Hatton, and P. S. Doyle, Langmuir 21, 2113 (2005).
http://dx.doi.org/10.1021/la047368k
5.
5.B. Zheng, L. S. Roach, and R. F. Ismagilov, J. Am. Chem. Soc. 125, 11170 (2003).
http://dx.doi.org/10.1021/ja037166v
6.
6.M. Prakash and N. Gershenfeld, Science 315, 832 (2007).
http://dx.doi.org/10.1126/science.1136907
7.
7.T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86, 4163 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4163
8.
8.H. Song, J. D. Tice, and R. F. Ismagilov, Angew. Chem., Int. Ed. 42, 767 (2003).
9.
9.H. Willaime, V. Barbier, L. Kloul, S. Maine, and P. Tabeling, Phys. Rev. Lett. 96, 054501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.054501
10.
10.P. Garstecki, M. J. Fuerstman, and G. M. Whitesides, Nat. Phys. 1, 168 (2005).
11.
11.M. Schindler and A. Ajdari, Phys. Rev. Lett. 100, 044501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.044501
12.
12.B. J. Adzima and S. S. Velankar, J. Micromech. Microeng. 16, 1504 (2006).
http://dx.doi.org/10.1088/0960-1317/16/8/010
13.
13.N. A. Mortensen, F. Okkels, and H. Bruus, Phys. Rev. E 71, 057301 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.057301
14.
14.W. Engl, M. Roche, A. Colin, P. Panizza, and A. Ajdari, Phys. Rev. Lett. 95, 208304 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.208304
15.
15.F. P. Bretherton, J. Fluid Mech. 10, 166 (1961).
http://dx.doi.org/10.1017/S0022112061000160
16.
16.S. R. Hodges, O. E. Jensen, and J. M. Rallison, J. Fluid Mech. 501, 279 (2004).
http://dx.doi.org/10.1017/S0022112003007213
17.
17.H. Wong, C. J. Radke, and S. Morris, J. Fluid Mech. 292, 95 (1995).
http://dx.doi.org/10.1017/S0022112095001455
18.
18.D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Phys. Rev. Lett. 92, 054503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.054503
19.
19.M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone, and G. M. Whitesides, Lab Chip 7, 1479 (2007).
http://dx.doi.org/10.1039/b706549c
20.
20.D. Qin, Y. Xia, and G. M. Whitesides, Adv. Mater. (Weinheim, Ger.) 8, 917 (1996).
http://dx.doi.org/10.1002/adma.19960081110
21.
21.D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, Anal. Chem. 70, 4974 (1998).
http://dx.doi.org/10.1021/ac980656z
22.
22.C. Harrison, J. T. Cabral, C. M. Stafford, A. Karim, and E. J. Amis, J. Micromech. Microeng. 14, 153 (2004).
http://dx.doi.org/10.1088/0960-1317/14/1/021
23.
23.D. Malsch, M. Kielpinski, R. Merthan, J. Albvert, G. Mayer, J. M. Köhler, H. Sube, M. Stahl, and T. Henkel, Chem. Eng. J. 135, S166 (2008).
24.
24.G. A. Groß, V. Thyagarajan, M. Kielpinski, T. Henkel, and J. M. Köhler, Microfluid. Nanofluid. 5, 281 (2008).
25.
25.It has to be noted that the large deviations in the data fit in Ref. 19 put into question the scaling argument first put forward by Bretherton (Ref. 15). We do not have a better explanation, however.
26.
26.S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82, 364 (2003).
http://dx.doi.org/10.1063/1.1537519
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3109686
Loading
/content/aip/journal/bmf/3/1/10.1063/1.3109686
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/1/10.1063/1.3109686
2009-03-30
2014-09-18

Abstract

The overall traffic of droplets in a network of microfluidic channels is strongly influenced by the liquid properties of the moving droplets. In particular, the effective hydrodynamic resistance of individual droplets plays a key role in their global behavior. Here we propose two simple and low-cost experimental methods for measuring this parameter by analyzing the dynamics of a regular sequence of droplets injected into an “asymmetric loop” network. The choice of a droplet taking either route through the loop is influenced by the presence of previous droplets that modulate the hydrodynamic resistance of the branches they are sitting in. We propose to extract the effective resistance of a droplet from easily observable time series, namely, from the choices the droplets make at junctions and from the interdroplet distances. This becomes possible when utilizing a recently proposed theoretical model based on a number of simplifying assumptions. Here we present several sets of measurements of the hydrodynamic resistance of droplets, expressed in terms of a “resistance length.” The aim is twofold: (1) to reveal its dependence on a number of parameters, such as the viscosity, the volume of droplets, their velocity as well as the spacing between them. At the same time (2), by using a standard measurement technique, we compare the limitations of the proposed methods. As an important result of this comparison, we obtain the range of validity of the simplifying assumptions made in the theoretical model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/1/1.3109686.html;jsessionid=1j0unslok5htc.x-aip-live-03?itemId=/content/aip/journal/bmf/3/1/10.1063/1.3109686&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/1/10.1063/1.3109686
10.1063/1.3109686
SEARCH_EXPAND_ITEM