1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/2/10.1063/1.3116665
1.
1.L. F. Erdile, D. Smith, and D. Berd, J. Immunol. Methods 258, 47 (2001).
http://dx.doi.org/10.1016/S0022-1759(01)00465-3
2.
2.A. Meenakshi, R. S. Kumar, and N. S. Kumar, J. Immunoassay Immunochem. 23, 293 (2002).
http://dx.doi.org/10.1081/IAS-120013028
3.
3.S. Sirivichayakul, P. Phanuphak, S. Tanprasert, S. Thanomchat, C. Uneklabh, T. Phutiprawan, C. Mungklavirat, and Y. Panjurai, J. Clin. Microbiol. 31, 1373 (1993).
4.
4.Y. Jeong, K. J. Kim, D. J. Kim, S. W. Oh, and E. Y. Choi, Clin. Chem. 49, 826 (2003).
http://dx.doi.org/10.1373/49.5.826
5.
5.J. S. Rossier and H. H. Girault, Lab Chip 1, 153 (2001).
http://dx.doi.org/10.1039/b104772h
6.
6.S. Lai, S. Wang, J. Luo, L. J. Lee, S. -T. Yand, and M. J. Madou, Anal. Chem. 76, 1832 (2004).
http://dx.doi.org/10.1021/ac0348322
7.
7.J. Rossier and H. Girault, Lab Chip 1, 153 (2001).
http://dx.doi.org/10.1039/b104772h
8.
8.K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kitamori, Anal. Chem. 72, 1144 (2000).
http://dx.doi.org/10.1021/ac991151r
9.
9.K. Sato, M. Tokeshi, H. Kimura, and T. Kitamori, Anal. Chem. 73, 1213 (2001).
http://dx.doi.org/10.1021/ac000991z
10.
10.N. G. Anderson, Science 166, 317 (1969).
http://dx.doi.org/10.1126/science.166.3903.317
11.
11.C. D. Scott and C. A. Burtis, Anal. Chem. 45, 327A (1973).
http://dx.doi.org/10.1021/ac60326a019
12.
12.T. O. Tiffany, C. A. Burtis, and N. G. Anderson, Methods Enzymol. 31, 790 (1974).
http://dx.doi.org/10.1016/0076-6879(74)31081-6
13.
13.T. Klumpp, Ann. Biol. Clin. 35, 221 (1977).
14.
14.V. Henry, J. Deutsch, and G. Lum, Clin. Chem. 24, 514 (1978).
15.
15.M. Madou, L. J. Lee, S. Daunert, S. Lai, and C. -H. Shih, Biomed. Microdevices 3, 245 (2001).
http://dx.doi.org/10.1023/A:1011419515576
17.
17.R. H. Liu, Q. Yu, J. M. Bauer, J. S. Moore, and D. J. Beebe, in Technical Digest of Solid-State Sensor & Actuator Workshop, Hilton Head Island, SC, June 2000, pp. 222–226.
18.
18.X. Cao, S. Lai, and L. J. Lee, Biomed. Microdevices 3, 109 (2001).
http://dx.doi.org/10.1023/A:1011494008729
19.
19.P. Griss, H. Andersson, and G. Stemme, Lab Chip 2, 117 (2002).
http://dx.doi.org/10.1039/b111040n
20.
20.M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Science 288, 113 (2000).
http://dx.doi.org/10.1126/science.288.5463.113
21.
21.S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, Anal. Chem. 74, 6392 (2002).
http://dx.doi.org/10.1021/ac0259818
22.
22.D. C. Duffy, H. L. Gills, J. Lin, N. F. Sheppard, and G. Kellogg, Anal. Chem. 71, 4669 (1999).
http://dx.doi.org/10.1021/ac990682c
23.
23.M. J. Madou, Y. Lu, S. Lai, L. J. Lee, and S. Daunert, Biomed. Microdev. 3, 245 2001).
http://dx.doi.org/10.1023/A:1011419515576
24.
24.H. Y. Erbil, A. L. Demirel, Y. Avci, and O. Mert, Science 299, 1377 (2003).
http://dx.doi.org/10.1126/science.1078365
25.
25.Q. Xie, J. Xu, L. Feng, W. Tang, X. Luo, and C. C. Han, Adv. Mater. (Weinheim, Ger.) 16, 302 (2004).
http://dx.doi.org/10.1002/adma.200306281
26.
26.X. Lu, C. Zhang, and Y. Han, Macromol. Rapid Commun. 25, 1606 (2004).
http://dx.doi.org/10.1002/marc.200400256
27.
27.L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, and D. Zhu, Angew. Chem. 115, 824 (2003).
http://dx.doi.org/10.1002/ange.200390181
28.
28.I. Woodward, W. C. E. Schofield, V. Roucoules, and J. P. S. Badyal, Langmuir 19, 3432 (2003).
http://dx.doi.org/10.1021/la020427e
29.
29.T. Sun, G. Wang, L. Feng, B. Liu, Y. Ma, L. Jiang, and D. Zhu, Angew. Chem., Int. Ed. 43, 357 (2004).
http://dx.doi.org/10.1002/anie.200352565
30.
30.C. Lu, Y. Xie, Y. Yang, M. M.-C. Cheng, C. -G. Koh, Y. Bai, L. J. Lee, and Y. -J. Juang, Anal. Chem. 79, 994 (2007).
http://dx.doi.org/10.1021/ac0615798
31.
31.M. Herrmann, E. Roy, T. Veres, and M. Tabrizian, Lab Chip 7, 1546 (2007).
http://dx.doi.org/10.1039/b707883h
32.
32.K. Sato, M. Yamanaka, T. Hagino, M. Tokeshi, H. Kimura, and T. Kitamori, Lab Chip 4, 570 (2004).
http://dx.doi.org/10.1039/b411356j
33.
33.M. Kakuta, H. Takahashi, S. Kazuno, K. Murayama, T. Ueno, and M. Tokeshi, Meas. Sci. Technol. 17, 3189 (2006).
http://dx.doi.org/10.1088/0957-0233/17/12/S12
34.
34.L. Yu, C. M. Li, and Q. Zhou, Front. Biosci. 10, 2848 (2005).
http://dx.doi.org/10.2741/1741
35.
35.Y. Jang, S. Y. Oh, and J. -K. Park, Enzyme Microb. Technol. 39, 1122 (2006).
http://dx.doi.org/10.1016/j.enzmictec.2006.02.020
36.
36.T. G. Henares, S. Funano, S. Terabe, F. Mizutani, R. Sekizawa, and H. Hisamoto, Anal. Chim. Acta 589, 173 (2007).
http://dx.doi.org/10.1016/j.aca.2007.02.060
37.
37.Y. L. Bai, C. G. Koh, M. Boreman, Y. J. Juang, I. C. Tang, L. J. Lee, and S. T. Yang, Langmuir 22, 9458 (2006).
http://dx.doi.org/10.1021/la061123l
38.
38.J. M. Fowler, M. C. Stuart, and D. K. Y. Wong, Anal. Chem. 79, 350 (2007).
http://dx.doi.org/10.1021/ac061175f
39.
39.A. A. Karyakin, G. V. Presnova, M. Y. Rubtsova, and A. M. Egorov, Anal. Chem. 72, 3805 (2000).
http://dx.doi.org/10.1021/ac9907890
40.
40.H. Wang, Y. L. Liu, Y. H. Yang, T. Deng, G. L. Shen, and R. Q. Yu, Anal. Biochem. 324, 219 (2004).
http://dx.doi.org/10.1016/j.ab.2003.09.032
41.
41.G. Y. Shen, H. Wang, T. Deng, G. L. Shen, and R. Q. Yu, Talanta 67, 217 (2005).
http://dx.doi.org/10.1016/j.talanta.2005.02.020
42.
42.C. P. Johnson, I. E. Jensen, A. Prakasam, R. Vijayendran, and D. Leckband, Bioconjugate Chem. 14, 974 (2003).
http://dx.doi.org/10.1021/bc034063t
43.
43.N. -R. Chiou and A. J. Epstein, Adv. Mater. (Weinheim, Ger.) 17, 1679 (2005).
http://dx.doi.org/10.1002/adma.200401000
44.
44.Y. Yang, C. Zeng, and L. J. Lee, Adv. Mater. (Weinheim, Ger.) 16, 560 (2004).
http://dx.doi.org/10.1002/adma.200306159
45.
45.Y. Yuan, H. He, and L. J. Lee, Biotechnol. Bioeng. 102, 891 (2009).
http://dx.doi.org/10.1002/bit.22136
46.
46.P. van der Wal and U. Steiner, Soft Matter 3, 426 (2007).
http://dx.doi.org/10.1039/b613947g
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3116665
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The general principle and procedures of sandwich-type ELISA.

Image of FIG. 2.

Click to view

FIG. 2.

Computer-aided design of (a) a 12-set compact disk with capillary valves and splitters and (b) a single assay on the compact disk. The primary antibody was preimmobilized at the detection area. The mixture of antigen and second antibody was loaded in reservoirs 1 and . Reservoirs 2 and 4 were used for washing solution. Reservoirs 3 and 5 were used for conjugate and substrate, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

An injection-molded compact disk ELISA chip.

Image of FIG. 4.

Click to view

FIG. 4.

Schematic of (a) a capillary valve with balance of centrifugal force and capillary force, (b) a fish-bone valve, and (c) computational mesh for capillary value.

Image of FIG. 5.

Click to view

FIG. 5.

SEM images of (a) a PMMA surface and (b) a CYTOP-polyaniline nanofiber-coated PMMA surface, and the water contact angles on the surface with different treatments before BSA blocking: (c) PMMA and (d) CYTOPpolyaniline-coated PMMA.

Image of FIG. 6.

Click to view

FIG. 6.

(a) A capillary valve without any treatment cannot stop the mixed solution containing BSA and food dye after protein blocking. Also with (b) CYTOP or (c) CYTOP-polyaniline treatment, the capillary valve can hold the mixed solution.

Image of FIG. 7.

Click to view

FIG. 7.

Snapshots of the flow sequencing on a five-well CD chip with capillary valves: (a) Beginning, (b) 320 rpm, (c) 550 rpm, (d) 990 rpm, (e) 1220 rpm, and (f) 1600 rpm. Here, the capillary valves 1 and 2 were coated with CYTOP. Also the capillary valves 3–5 were treated with the CYTOP-polyaniline method.

Image of FIG. 8.

Click to view

FIG. 8.

Simulated liquid-air interfaces for capillary valves with different contact angles: (a) No. 1, 93° at 350 rpm; (b) No. 2, 93° at 550 rpm; (c) No. 3, 165° at 750 rpm; (d) No. 4, 165° at 1000 rpm; and (e) No. 5, 165° at 1350 rpm.

Image of FIG. 9.

Click to view

FIG. 9.

Flow pattern demonstration carried out on a CD chip with the splitters.

Image of FIG. 10.

Click to view

FIG. 10.

Comparison of bioactivity of antibodies on microchips immobilized with different approaches. The averages and error bars were calculated from three independent samples.

Image of FIG. 11.

Click to view

FIG. 11.

Calibration curves for IFN- ELISA detection carried out (a) in a 96-well plate and (b) on a PMMA CD-like chip modified by the plasma-PEI-TR protein A method. The averages and error bars were calculated from three independent samples.

Tables

Generic image for table

Click to view

Table I.

Water contact angle on PMMA surface with different treatments.

Generic image for table

Click to view

Table II.

Dimensions and burst frequencies on the five-well CD chip. (Note: The designed channel depth is and the actual depths for valves 1–5 are 157, 147, 161, 162, and , respectively.)

Generic image for table

Click to view

Table III.

Effect of contact angle on burst frequency for the no. 1 valve. (Note: Experimental data are based on three CD chips; measured dimensions are used as the input for simulation.)

Generic image for table

Click to view

Table IV.

Comparison of 96-well plate and microchannels for IFN- detection.

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3116665
2009-04-13
2014-04-24

Abstract

Enzyme-linked immunosorbent assay (ELISA) has been widely used in medical diagnostics, environmental analyses, and biochemical studies. To reduce assay time and lower consumption of reagents in cytokine ELISA analysis, a polymeric microfluidic biochip has been designed and fabricated via several new techniques: Polyaniline-based surface modification for superhydrophobic capillary valving and oxygen plasma-poly(ethyleneimine)-tyrosinase-protein A modification for high sensitivity protein detection. The proper flow sequencing was achieved using the superhydrophobic capillary valves. The burst frequency of each valve was experimentally determined and compared with two capillary force equations and the fluent finite element simulation. This fully automated microfluidic biochip with an analyzer is able to provide high fluorescence signal of ELISA with a wider linear detection range and a much shorter assay time than 96-well microtiter plates. It is applicable to a variety of nonclinic research and clinically relevant disease conditions. The modification technologies in this study can be implemented in other lab-on-a-chip systems, drug/gene delivery carriers, and other immunoassay biosensor applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3116665.html;jsessionid=7kcq5bk64mdc4.x-aip-live-02?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3116665&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3116665
10.1063/1.3116665
SEARCH_EXPAND_ITEM