1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Experimental verification of Faradaic charging in ac electrokinetics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/2/10.1063/1.3120273
1.
1.H.-C. Chang, Can. J. Chem. Eng. 84, 146 (2006).
http://dx.doi.org/10.1139/v05-255
2.
2.H. -C. Chang and G. Yossifon, Biomicrofluidics 3, 012001 (2009).
http://dx.doi.org/10.1063/1.3056045
3.
3.J. Wu, Y. Ben, and H. -C. Chang, Microfluid. Nanofluid. 1, 161 (2005).
http://dx.doi.org/10.1007/s10404-004-0024-5
4.
4.J. -R. Du, Y. -J. Juang, J. -T. Wu, and H. -H. Wei, Biomicrofluidics 2, 044103 (2008).
http://dx.doi.org/10.1063/1.3037326
5.
5.N. Lewpiriyawong, C. Yang, and Y. C. Lam, Biomicrofluidics 2, 034105 (2008).
http://dx.doi.org/10.1063/1.2973661
6.
6.C. H. Kua, Y. C. Lam, I. Rodríguez, C. Yang, and K. Youcef-Toumi, Anal. Chem. 79, 6975 (2007).
http://dx.doi.org/10.1021/ac070810u
7.
7.A. B. D. Brown, C. G. Smith, and A. R. Rennie, Phys. Rev. E 63, 016305 (2000).
http://dx.doi.org/10.1103/PhysRevE.63.016305
8.
8.M. Mpholo, C. G. Smith, and A. B. D. Brown, Sens. Actuators B 92, 262 (2003).
http://dx.doi.org/10.1016/S0925-4005(03)00289-2
9.
9.S. Debesset, C. J. Hayden, C. Dalton, J. C. T. Eijkel, and A. Manz, Lab Chip 4, 396 (2004).
http://dx.doi.org/10.1039/b314123c
10.
10.J. Wu, J. Appl. Phys. 103, 024907 (2008).
http://dx.doi.org/10.1063/1.2832624
11.
11.D. Lastochkin, R. Zhou, P. Wang, Y. Ben, and H. -C. Chang, J. Appl. Phys. 96, 1730 (2004).
http://dx.doi.org/10.1063/1.1767286
12.
12.V. Studer, A. Pepin, Y. Chen, and A. Ajdari, Analyst (Lond.) 129, 944 (2004).
http://dx.doi.org/10.1039/b408382m
13.
13.A. Ramos, H. Morgan, N. G. Green, A. Gonalez, and A. Castellanos, J. Appl. Phys. 97, 084906 (2005).
http://dx.doi.org/10.1063/1.1873034
14.
14.J. P. Urbanski, T. Thorsen, J. A. Levitan, and M. Z. Bazant, Appl. Phys. Lett. 89, 143508 (2006).
http://dx.doi.org/10.1063/1.2358823
15.
15.P. Garcia-Sanchez, A. Ramos, N. G. Green, and H. Morgan, Langmuir 24, 9361 (2008).
http://dx.doi.org/10.1021/la800423k
16.
16.K. Yang and J. Wu, Biomicrofluidics 2, 024101 (2008).
http://dx.doi.org/10.1063/1.2908026
17.
17.N. Sasaki, T. Kitamori, and H. B. Kim, Lab Chip 6, 550 (2006).
http://dx.doi.org/10.1039/b515852d
18.
18.W. Y. Ng, S. Goh, Y. C. Lam, C. Yang, and I. Rodríguez, Lab Chip 9, 802 (2009).
http://dx.doi.org/10.1039/b813639d
19.
19.W. Y. Ng, Y. C. Lam, and I. Rodríguez, Proceedings of the Conference on Advances in Microfluidics and Nanofluidics, Hong Kong, 2009 (unpublished), Paper No. E7-1.
20.
20.A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, J. Phys. D 31, 2338 (1998).
http://dx.doi.org/10.1088/0022-3727/31/18/021
21.
21.A. Ajdari, Phys. Rev. E 61, R45 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.R45
22.
22.L. H. Olesen, H. Bruus, and A. Ajdari, Phys. Rev. E 73, 056313 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.056313
23.
23.A. Ramos, A. Gonalez, P. Garcia-Sanchez, and A. Castellanos, J. Colloid Interface Sci. 309, 323 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.01.076
24.
24.D. R. Lide, CRC Handbook of Chemistry and Physics, 88th ed. (CRC, Boca Raton /Taylor & Francis, New York, 2008), pp. 818.
25.
25.S. Fiedler, R. Hagedom, T. Schnelle, E. Richter, B. Wagner, and G. Fuhr, Anal. Chem. 67, 820 (1995).
http://dx.doi.org/10.1021/ac00101a006
26.
26.J. C. McDonald and G. M. Whitesides, Acc. Chem. Res. 35, 491 (2002).
http://dx.doi.org/10.1021/ar010110q
27.
27.M. Trau, D. A. Saville, and I. A. Aksay, Langmuir 13, 6375 (1997).
http://dx.doi.org/10.1021/la970568u
28.
28.R. G. H. Lammertink, S. Schlautmann, G. A. J. Besselink, and R. B. M. Schasfoort, Anal. Chem. 76, 3018 (2004).
http://dx.doi.org/10.1021/ac0353942
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3120273
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3120273
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3120273
2009-04-23
2014-09-01

Abstract

This paper investigates the phenomenon of Faradaic charging in acelectrokinetics. Faradaic reactions were suggested as a key effect responsible for the reversal of pumping direction in ac micropumps. However, this hypothesis has yet to be proven convincingly and directly. Here we present an ion detection strategy to determine the production of ions through Faradaic hydrolytic reactions originating from direct application of voltage to electrolytic solutions during acelectrokinetics. Experiments were performed with symmetrical planar electrodes aligned along a microfluidic channel. Fluorescein, a -dependent dye, was employed as the indicator for the detection of ion production. Images were captured for analysis at various voltage levels. From analyzing the fluorescence intensity and its distribution, it can be concluded that the production of ions from hydrolytic reactions takes place and increases with the ac voltage. The coefficient of deviation indicates a significant enhancement at ac voltage above . Lastly, we demonstrate a strategy using dc-biased acelectrokinetics to achieve controllability in direction and magnitude of the net fluid flow in pumping application.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3120273.html;jsessionid=8bathppfidbqm.x-aip-live-03?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3120273&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental verification of Faradaic charging in ac electrokinetics
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3120273
10.1063/1.3120273
SEARCH_EXPAND_ITEM