1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Pressure-driven transport of particles through a converging-diverging microchannel
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/2/10.1063/1.3122594
1.
1.T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.977
2.
2.P. S. Dittrich and A. Manz, Nat. Rev. Drug Discovery 5, 210 (2006).
http://dx.doi.org/10.1038/nrd1985
3.
3.D. B. Weibel and G. M. Whitesides, Curr. Opin. Chem. Biol. 10, 584 (2006).
http://dx.doi.org/10.1016/j.cbpa.2006.10.016
4.
4.F. A. Gomez, Biological Applications of Microfluidics (Wiley Interscience, New Jersey, 2008).
5.
5.R. Johann and P. Renaud, Electrophoresis 25, 3720 (2004).
http://dx.doi.org/10.1002/elps.200406104
6.
6.Z. Palkova, L. Vachova, M. Valer, and T. Preckel, Cytometry, Part A 59A, 246 (2004).
http://dx.doi.org/10.1002/cyto.a.20049
7.
7.D. Stein, F. H. J. van der Heyden, W. J. A. Koopmans, and C. Dekker, Proc. Natl. Acad. Sci. U.S.A. 103, 15853 (2006).
http://dx.doi.org/10.1073/pnas.0605900103
8.
8.J. W. Munyan, H. V. Fuentes, M. Draper, R. T. Kelly, and A. T. Woolley, Lab Chip 3, 217 (2003).
http://dx.doi.org/10.1039/b309788a
9.
9.J. W. Kan, Z. G. Yang, T. J. Peng, G. M. Cheng, and B. Wu, Sens. Actuator, A 121, 156 (2005).
http://dx.doi.org/10.1016/j.sna.2004.12.002
10.
10.J. Happel and B. J. Byrne, J. Ind. Eng. Chem. (Seoul, Repub. Korea) 46, 1181 (1954).
http://dx.doi.org/10.1021/ie50534a032
11.
11.W. L. Haberman, R. M. Sayre, and W. David, Taylor Basin Report No. 1143, 1958.
12.
12.R. G. Cox and S. G. Mason, Annu. Rev. Fluid Mech. 3, 291 (1971).
http://dx.doi.org/10.1146/annurev.fl.03.010171.001451
13.
13.P. M. Bungay and H. Brenner, Int. J. Multiphase Flow 1, 25 (1973).
http://dx.doi.org/10.1016/0301-9322(73)90003-7
14.
14.M. Iwaoka and T. Ishii, J. Chem. Eng. Jpn. 12, 239 (1979).
http://dx.doi.org/10.1252/jcej.12.239
15.
15.N. Al Quddus, W. A. Moussa, and S. Bhattacharjee, J. Colloid Interface Sci. 317, 620 (2008).
http://dx.doi.org/10.1016/j.jcis.2007.09.060
16.
16.M. E. Staben and R. H. Davis, Int. J. Multiphase Flow 31, 529 (2005).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2004.12.004
17.
17.M. E. Staben, A. Z. Zinchenko, and R. H. Davis, J. Fluid Mech. 553, 187 (2006).
http://dx.doi.org/10.1017/S0022112006008731
18.
18.M. L. Plenert and J. B. Shear, Proc. Natl. Acad. Sci. U.S.A. 100, 3853 (2003).
http://dx.doi.org/10.1073/pnas.0637211100
19.
19.X. C. Xuan, B. Xu, and D. Q. Li, Anal. Chem. 77, 4323 (2005).
http://dx.doi.org/10.1021/ac048216x
20.
20.S. Z. Qian, A. H. Wang, and J. K. Afonien, J. Colloid Interface Sci. 303, 579 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.08.003
21.
21.Y. J. Kang, D. Q. Li, S. A. Kalams, and J. E. Eid, Biomed. Microdevices 10, 243 (2008).
http://dx.doi.org/10.1007/s10544-007-9130-y
22.
22.G. L. Lettieri, A. Dodge, G. Boer, N. F. de Rooij, and E. Verpoorte, Lab Chip 3, 34 (2003).
http://dx.doi.org/10.1039/b211869f
23.
23.X. C. Xuan and D. Q. Li, J. Micromech. Microeng. 16, 62 (2006).
http://dx.doi.org/10.1088/0960-1317/16/1/009
24.
24.J. W. Larson, G. R. Yantz, Q. Zhong, R. Charnas, C. M. D’Antoni, M. V. Gallo, K. A. Gillis, L. A. Neely, K. M. Phillips, G. G. Wong, S. R. Gullans, and R. Gilmanshin, Lab Chip 6, 1187 (2006).
http://dx.doi.org/10.1039/b602845d
25.
25.S. S. Hsieh and J. H. Liou, Biotechnol. Appl. Biochem. 52, 29 (2009).
http://dx.doi.org/10.1042/BA20070219
26.
26.D. W. Trahan and P. S. Doyle, Biomicrofluidics 3, 012803 (2009).
http://dx.doi.org/10.1063/1.3055275
27.
27.H. H. Hu, D. D. Joseph, and M. J. Crochet, Theor. Comput. Fluid Dyn. 3, 285 (1992).
http://dx.doi.org/10.1007/BF00717645
28.
28.H. H. Hu, N. A. Patankar, and M. Y. Zhu, J. Comput. Phys. 169, 427 (2001).
http://dx.doi.org/10.1006/jcph.2000.6592
29.
29.C. Z. Ye, D. Sinton, D. Erickson, and D. Q. Li, Langmuir 18, 9095 (2002).
http://dx.doi.org/10.1021/la026070w
30.
30.C. Z. Ye and D. Q. Li, Microfluid. Nanofluid. 1, 52 (2004).
http://dx.doi.org/10.1007/s10404-004-0004-9
31.
31.C. Z. Ye and D. Q. Li, J. Colloid Interface Sci. 272, 480 (2004).
http://dx.doi.org/10.1016/j.jcis.2003.11.014
32.
32.C. Z. Ye, X. C. Xuan, and D. Q. Li, Microfluid. Nanofluid. 1, 234 (2005).
http://dx.doi.org/10.1007/s10404-004-0016-5
33.
33.S. M. Davison and K. V. Sharp, Microfluid. Nanofluid. 4, 409 (2008).
http://dx.doi.org/10.1007/s10404-007-0192-1
34.
34.S. M. Davison and K. V. Sharp, J. Colloid Interface Sci. 303, 288 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.07.063
35.
35.X. C. Xuan, C. Z. Ye, and D. Q. Li, J. Colloid Interface Sci. 289, 286 (2005).
http://dx.doi.org/10.1016/j.jcis.2005.03.045
36.
36.Y. Ai, S. W. Joo, Y. Jiang, X. C. Xuan, and S. Qian, “Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: Effect of direct current- dielectric force,” Electrophoresis (in press).
37.
37.D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Proc. Natl. Acad. Sci. U.S.A. 104, 18892 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
38.
38.D. Di Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, and M. Toner, Anal. Chem. 80, 2204 (2008).
http://dx.doi.org/10.1021/ac702283m
39.
39.N. Pamme, Lab Chip 7, 1644 (2007).
http://dx.doi.org/10.1039/b712784g
40.
40.S. Choi, S. Song, C. Choi, and J. K. Park, Lab Chip 7, 1532 (2007).
http://dx.doi.org/10.1039/b705203k
41.
41.N. Korin, A. Bransky, and U. Dinnar, J. Biomech. 40, 2088 (2007).
http://dx.doi.org/10.1016/j.jbiomech.2006.10.004
42.
42.N. Korin, A. Bransky, N. Lanir, Y. Nemirovski, and U. Dinnar, Biorheology 45, 34 (2008).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3122594
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3122594
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3122594
2009-04-22
2014-11-28

Abstract

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then decelerated in the diverging region, with the maximum translational velocity at the throat. For particles with diameters close to the width of the channel throat, the usual acceleration process is divided into three stages: Acceleration, deceleration, and reacceleration instead of a monotonic acceleration. Moreover, the maximum translational velocity occurs at the end of the first acceleration stage rather than at the throat. Along the centerline of the microchannel, particles do not rotate, and the closer a particle is located near the channel wall, the higher is its rotational velocity. Analysis of the transport of two particles demonstrates the feasibility of using a converging-diverging microchannel for passive (biological and synthetic) particle separation and ordering.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3122594.html;jsessionid=2i9ernruvtlr1.x-aip-live-02?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3122594&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Pressure-driven transport of particles through a converging-diverging microchannel
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3122594
10.1063/1.3122594
SEARCH_EXPAND_ITEM