Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/2/10.1063/1.3129563
1.
1.J. -L. Viovy, Rev. Mod. Phys. 72, 813 (2000).
http://dx.doi.org/10.1103/RevModPhys.72.813
2.
2.K. Klepárník and P. Boček, Chem. Rev. (Washington, D.C.) 107, 5279 (2007).
http://dx.doi.org/10.1021/cr0101860
3.
3.H. Cottet, P. Gareil, and J. -L. Viovy, Electrophoresis 19, 2151 (1998).
http://dx.doi.org/10.1002/elps.1150191219
4.
4.B. M. Olivera, P. Baine, and N. Davidson, Biopolymers 2, 245 (1964).
http://dx.doi.org/10.1002/bip.1964.360020306
5.
5.R. R. Netz, Phys. Rev. Lett. 90, 128104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.128104
6.
6.R. R. Netz, J. Phys. Chem. B 107, 8208 (2003).
http://dx.doi.org/10.1021/jp022618w
7.
7.P. -Y. Hsiao and K. -M. Wu, J. Phys. Chem. B 112, 13177 (2008).
http://dx.doi.org/10.1021/jp805902s
8.
8.M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986).
9.
9.D. Long, J. -L. Viovy, and A. Ajdari, Phys. Rev. Lett. 76, 3858 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3858
10.
10.M. Tanaka and A. Grosberg, Eur. Phys. J. E 7, 371 (2002).
11.
11.E. Stellwagen, Y. Lu, and N. Stellwagen, Biochemistry 42, 11745 (2003).
http://dx.doi.org/10.1021/bi035203p
12.
12.K. Grass, U. Böhme, U. Scheler, H. Cottet, and C. Holm, Phys. Rev. Lett. 100, 096104 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.096104
13.
13.P. -Y. Hsiao and E. Luijten, Phys. Rev. Lett. 97, 148301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.148301
14.
14.P. -Y. Hsiao, J. Chem. Phys. 124, 044904 (2006).
http://dx.doi.org/10.1063/1.2155484
15.
15.The simulations were run using LAMMPS package (http://lammps.sandia.gov).
16.
16.V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).
http://dx.doi.org/10.1016/S0959-440X(96)80052-2
17.
17.M. G. L. van den Heuvel, R. Bondesan, M. C. Lagomarsino, and C. Dekker, Phys. Rev. Lett. 101, 118301 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.118301
18.
18.X. Schlagberger and R. Netz, Europhys. Lett. 70, 129 (2005).
http://dx.doi.org/10.1209/epl/i2004-10461-5
19.
19.X. Schlagberger and R. R. Netz, Europhys. Lett. 83, 36003 (2008).
http://dx.doi.org/10.1209/0295-5075/83/36003
20.
20.S. Frank and R. G. Winkler, Europhys. Lett. 83, 38004 (2008).
http://dx.doi.org/10.1209/0295-5075/83/38004
21.
21.M. Cosentino Lagomarsino, I. Pagonabarraga, and C. P. Lowe, Phys. Rev. Lett. 94, 148104 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.148104
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3129563
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3129563
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3129563
2009-05-19
2016-12-04

Abstract

We study the behavior of single linear polyelectrolytes condensed by trivalent salt under the action of electric fields through computer simulations. The chain is unfolded when the strength of the electric field is stronger than a critical value. This critical electric field follows a scaling law against chain length, and the exponent of the scaling law is −0.77(1), smaller than the theoretical prediction, [R. R. Netz, Phys. Rev. Lett.90, 128104 (2003)], and the one obtained by simulations in tetravalent salt solutions, −0.453(3) [P.-Y. Hsiao and K.-M. Wu, J. Phys. Chem. B112, 13177 (2008)]. It demonstrates that the scaling exponent depends sensitively on the salt valence. Hence, it is easier to unfold chains condensed by multivalent salt of a smaller valence. Moreover, the absolute value of chain electrophoreticmobility increases drastically when the chain is unfolded in an electric field. The fact that the mobility depends on electric field and on chain length provides a plausible way to impart chain-length dependence in free-solution electrophoresis via chain unfolding transition induced by electric fields. Finally, we show that, in addition to an elongated structure, a condensed chain can be unfolded into a U-shaped structure. The formation of this structure in our study is purely a result of the electric polarization, not of the elastohydrodynamics dominated in sedimentation of polymers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3129563.html;jsessionid=4y3VAnWb_d8fhMpHldeQC5vc.x-aip-live-06?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3129563&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/2/10.1063/1.3129563&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/2/10.1063/1.3129563'
Right1,Right2,Right3,