Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/2/10.1063/1.3130988
1.
1.R. Spohr, Radiat. Meas. 40, 191 (2005).
http://dx.doi.org/10.1016/j.radmeas.2005.03.008
2.
2.Z. Siwy, L. Trofin, P. Kohli, L. A. Baker, C. Trautmann, and C. R. Martin, J. Am. Chem. Soc. 127, 5000 (2005).
http://dx.doi.org/10.1021/ja043910f
3.
3.J. H. Wang and C. R. Martin, Nanomedicine 3, 13 (2008).
http://dx.doi.org/10.2217/17435889.3.1.13
4.
4.C. Harrell, Y. Choi, L. Horne, A. Baker, Z. Siwy, and C. R. Martin, Langmuir 22, 10837 (2006).
http://dx.doi.org/10.1021/la061234k
5.
5.E. A. Heins, Z. Siwy, L. A. Baker, and C. R. Martin, Nano Lett. 5, 1824 (2005).
http://dx.doi.org/10.1021/nl050925i
6.
6.C. Harrell, P. Kohli, Z. Siwy, and C. R. Martin, J. Am. Chem. Soc. 126, 15646 (2004).
http://dx.doi.org/10.1021/ja044948v
7.
7.F. Xia, W. Guo, Y. D. Mao, X. Hou, J. M. Xue, H. W. Xia, L. Wang, Y. L. Song, H. Ji, Q. Ouyang, Y. G. Wang, and L. Jiang, J. Am. Chem. Soc. 130, 8345 (2008).
http://dx.doi.org/10.1021/ja800266p
8.
8.Y. Xie, X. Wang, J. Xue, K. Jin, L. Chen, and Y. Wang, Appl. Phys. Lett. 93, 163116 (2008).
http://dx.doi.org/10.1063/1.3001590
9.
9.P. Déjardin, E. N. Vasina, V. Berezkin, V. D. Sobolev, and V. I. Volkov, Langmuir 21, 4680 (2005).
http://dx.doi.org/10.1021/la046913e
10.
10.J. Cervera, A. Alcaraz, B. Schiedt, R. Neumann, and P. Ramírez, J. Phys. Chem. C 111, 12265 (2007).
http://dx.doi.org/10.1021/jp071884c
11.
11.D. Constantin and Z. S. Siwy, Phys. Rev. E 76, 041202 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.041202
12.
12.J. Cervera, B. Schiedt, R. Neumann, S. Mafé, and P. Ramírez, J. Chem. Phys. 124, 104706 (2006).
http://dx.doi.org/10.1063/1.2179797
13.
13.P. Ramírez, P. Y. Apel, J. Cervera, and S. Mafé, Nanotechnology 19, 315707 (2008).
http://dx.doi.org/10.1088/0957-4484/19/31/315707
14.
14.F. H. J. van der Heyden, D. Stein, K. Besteman, S. Lemay, and C. Dekker, Phys. Rev. Lett. 96, 224502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.224502
15.
15.R. B. Schoch and P. Renaud, Appl. Phys. Lett. 86, 253111 (2005).
http://dx.doi.org/10.1063/1.1954899
16.
16.D. Stein, M. Kruithof, and C. Dekker, Phys. Rev. Lett. 93, 035901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.035901
17.
17.M. C. Lu, S. Satyanarayana, R. Karnik, A. Majumdar, and C. Wang, Journal of Micro. Mech. and Microengineering 16, 667 (2006).
http://dx.doi.org/10.1088/0960-1317/16/4/001
18.
18.Q. Liu, Y. Wang, W. Guo, H. Ji, J. Xue, and Q. Ouyang, Phys. Rev. E 75, 051201 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.051201
19.
19.P. Apel, A. Schulz, R. Spohr, C. Trautmann, and V. Vutsadakis, Nucl. Instrum. Methods Phys. Res. B 146, 468 (1998).
http://dx.doi.org/10.1016/S0168-583X(98)00445-5
20.
20.W. Guo, J. M. Xue, L. Wang, and Y. G. Wang, Nucl. Instrum. Methods Phys. Res. B 266, 3095 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.169
21.
21.V. V. Berezkin, V. I. Volkov, O. A. Kiseleva, N. V. Mitrofanova, and V. D. Sobolev, Adv. Colloid Interface Sci. 104, 325 (2003).
http://dx.doi.org/10.1016/S0001-8686(03)00054-X
22.
22.R. B. Schoch and J. Han, Rev. Mod. Phys. 80, 839 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.839
23.
23.C. Huang, K. Nandakumar, P. Y. K. Choi, and L. W. Kostiuk, J. Chem. Phys. 124, 234701 (2006).
http://dx.doi.org/10.1063/1.2209236
24.
24.Z. Siwy, P. Apel, D. Baur, D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
http://dx.doi.org/10.1016/S0039-6028(03)00448-5
25.
25.A. Wolf, N. Reber, P. Y. Apel, B. E. Fischer, and R. Spohr, Nucl. Instrum. Methods Phys. Res. B 105, 291 (1995).
http://dx.doi.org/10.1016/0168-583X(95)00577-3
26.
26.J. Lyklema, J. Phys.: Condens. Matter 13, 5027 (2001).
http://dx.doi.org/10.1088/0953-8984/13/21/326
27.
27.L. P. Yezek, Langmuir 21, 10054 (2005).
http://dx.doi.org/10.1021/la051413m
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3130988
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3130988
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3130988
2009-05-13
2016-10-01

Abstract

Surface charge is one of the most important properties of nanopores, which determines the nanopore performance in many practical applications. We report the surface charge densities of track-etched nanopores, which were obtained by measuring the streaming current and pore conductance, respectively. Experimental results reveal that surface charge densities depend significantly on the salt concentrations. In addition the values obtained with the pore conductance were always several times higher than those calculated with the streaming current, and the gel-like surface layer on the nanopore was considered to be responsible for this discrepancy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3130988.html;jsessionid=QHTXy3d_WpjbkaG1LFe_UAyf.x-aip-live-06?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3130988&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/2/10.1063/1.3130988&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/2/10.1063/1.3130988'
Right1,Right2,Right3,