Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/2/10.1063/1.3137674
1.
1.V. S. Craig, C. Neto, and D. R. Williams, Phys. Rev. Lett. 87, 054504 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.054504
2.
2.C. H. Choi, K. J. A. Westin, and K. S. Breuer, Phys. Fluids 15, 2897 (2003).
http://dx.doi.org/10.1063/1.1605425
3.
3.S. Jin, P. Huang, J. Park, J. Y. Yoo, and K. S. Breuer, Exp. Fluids 37, 825 (2004).
http://dx.doi.org/10.1007/s00348-004-0870-7
4.
4.C. Cottin-Bizonne, B. Cross, A. Steinberger, and E. Charlaix, Phys. Rev. Lett. 94, 056102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.056102
5.
5.B. Cross, A. Steinberger, C. Cottin-Bizonne, J. P. Rieu, and E. Charlaix, Europhys. Lett. 73, 390 (2006).
http://dx.doi.org/10.1209/epl/i2005-10416-4
6.
6.C. D. Honig and W. A. Ducker, Phys. Rev. Lett. 98, 028305 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.028305
7.
7.R. Pit, H. Hervet, and L. Leger, Tribol. Lett. 7, 147 (1999).
http://dx.doi.org/10.1023/A:1019161101812
8.
8.C. Neto, V. S. J. Craig, and D. R. M. Williams, Eur. Phys. J. E 12, 71 (2003).
http://dx.doi.org/10.1140/epjed/e2003-01-018-0
9.
9.T. Schmatko, H. Hervet, and L. Leger, Phys. Rev. Lett. 94, 244501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.244501
10.
10.P. Huang, J. S. Guasto, and K. S. Breuer, J. Fluid Mech. 566, 447 (2006).
http://dx.doi.org/10.1017/S0022112006002229
11.
11.P. Huang and K. S. Breuer, Phys. Fluids 19, 028104 (2007).
http://dx.doi.org/10.1063/1.2539829
12.
12.Y. X. Zhu and S. Granick, Phys. Rev. Lett. 87, 096105 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.096105
13.
13.J. Ou, B. Perot, and J. P. Rothstein, Phys. Fluids 16, 4635 (2004).
http://dx.doi.org/10.1063/1.1812011
14.
14.J. Ou and J. P. Rothstein, Phys. Fluids 17, 103606 (2005).
http://dx.doi.org/10.1063/1.2109867
15.
15.M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature (London) 438, 44 (2005);
http://dx.doi.org/10.1038/43844a
15.M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature (London)438, 930(E) (2005).
http://dx.doi.org/10.1038/438930b
16.
16.C. -H. Choi, U. Ulmanella, J. Kim, C. -M. Ho, and C. -J. Kim, Phys. Fluids 18, 087105 (2006).
http://dx.doi.org/10.1063/1.2337669
17.
17.C. -H. Choi and C. -J. Kim, Phys. Rev. Lett. 96, 066001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.066001
18.
18.P. Joseph, C. Conttin-Bizonne, J. M. Benoît, C. Ybert, C. Journet, P. Tabeling, and L. Bocquet, Phys. Rev. Lett. 97, 156104 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.156104
19.
19.R. Truesdell, A. Mammoli, P. Vorobieff, F. van Swol, and C. J. Brinker, Phys. Rev. Lett. 97, 044504 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.044504
20.
20.C. Lee, C. -H. Choi, and C. -J. Kim, Phys. Rev. Lett. 101, 064501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.064501
21.
21.P. A. Thompson and M. O. Robbins, Phys. Rev. A 41, 6830 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.6830
22.
22.D. L. Morris, L. Hannon, and A. L. Garcia, Phys. Rev. A 46, 5279 (1992).
http://dx.doi.org/10.1103/PhysRevA.46.5279
23.
23.P. A. Thompson and S. M. Troian, Nature (London) 389, 360 (1997).
http://dx.doi.org/10.1038/39475
24.
24.J. L. Barrat and L. Bocquet, Faraday Discuss. 112, 119 (1999).
http://dx.doi.org/10.1039/a809733j
25.
25.J. L. Barrat and L. Bocquet, Phys. Rev. Lett. 82, 4671 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4671
26.
26.A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, Phys. Rev. E 61, 690 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.690
27.
27.M. Cieplak, J. Koplik, and J. R. Banavar, Phys. Rev. Lett. 86, 803 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.803
28.
28.T. M. Galea and P. Attard, Langmuir 20, 3477 (2004).
http://dx.doi.org/10.1021/la035880k
29.
29.J. H. Walther, T. Werder, and R. L. Jaffe, Phys. Rev. E 69, 062201 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062201
30.
30.N. V. Priezjev, A. A. Darhuber, and S. M. Troian, Phys. Rev. E 71, 041608 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041608
31.
31.B. Y. Cao, M. Chen, and Z. Y. Guo, Phys. Rev. E 74, 066311 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.066311
32.
32.M. Cieplak, J. Koplik, and J. R. Banavar, Phys. Rev. Lett. 96, 114502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.114502
33.
33.T. Min and J. Kim, Phys. Fluids 16, L55 (2004).
http://dx.doi.org/10.1063/1.1755723
34.
34.D. You and P. Moin, Phys. Fluids 19, 081701 (2007).
http://dx.doi.org/10.1063/1.2756578
35.
35.M. B. Martell, J. B. Perot, and J. P. Rothstein, J. Fluid Mech. 620, 31 (2009).
http://dx.doi.org/10.1017/S0022112008004916
36.
36.H. Brenner and V. Ganesan, Phys. Rev. E 61, 6879 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.6879
37.
37.N. G. Hadjiconstantinou and A. T. Patera, Int. J. Mod. Phys. C 8, 967 (1997).
http://dx.doi.org/10.1142/S0129183197000837
38.
38.S. T. O’Connell and P. A. Thompson, Phys. Rev. E 52, R5792 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.R5792
39.
39.E. G. Flekkoy, G. Wagner, and G. Feder, Europhys. Lett. 52, 271 (2000).
http://dx.doi.org/10.1209/epl/i2000-00434-8
40.
40.X. B. Nie, S. Y. Chen, W. N. E, and M. O. Robbins, J. Fluid Mech. 500, 55 (2004).
http://dx.doi.org/10.1017/S0022112003007225
41.
41.J. Cui, G. -W. He, and D. W. Qi, Acta Mech. Sin. 22, 503 (2006).
http://dx.doi.org/10.1007/s10409-006-0034-5
42.
42.Y. -C. Wang and G. -W. He, Chem. Eng. Sci. 62, 3574 (2007).
http://dx.doi.org/10.1016/j.ces.2006.12.093
43.
43.W. Q. Ren, J. Comput. Phys. 227, 1353 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.09.007
44.
44.We have used the MD code by S. Plimpton, computer code LAMMPS, 2008, which is available at http://lammps.sandia.gov/.
45.
45.O. I. Vinogradova, Langmuir 11, 2213 (1995).
http://dx.doi.org/10.1021/la00006a059
46.
46.E. Lauga and H. A. Stone, J. Fluid Mech. 489, 55 (2003).
http://dx.doi.org/10.1017/S0022112003004695
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3137674
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3137674
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3137674
2009-05-13
2016-09-30

Abstract

Recent experiments have found that slip length could be as large as on the order of for fluid flows over superhydrophobicsurfaces.Superhydrophobicsurfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobicsurfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobicsurface where the continuum assumption is not valid and the Navier-Stokes equations are used in a large region for bulk flows where the continuum assumption does hold. These two descriptions are coupled using the dynamic coupling model in the overlap region to ensure momentum continuity. The hybrid simulation predicts a superhydrophobic state with large slip lengths, which cannot be obtained by molecular dynamics simulation alone.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3137674.html;jsessionid=2aFuraJEnfMDT2oHqz-H2YQY.x-aip-live-06?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3137674&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/2/10.1063/1.3137674&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/2/10.1063/1.3137674'
Right1,Right2,Right3,