1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Modeling the coalescence of sessile droplets
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/2/10.1063/1.3154552
1.
1.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
2.
2.J. Atencia and D. J. Beebe, Nature (London) 437, 648 (2005).
http://dx.doi.org/10.1038/nature04163
3.
3.W. D. Ristenpart, P. M. McCalla, R. V. Roy, and H. A. Stone, Phys. Rev. Lett. 97, 064501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.064501
4.
4.L. Y. Yeo, R. V. Craster, and O. K. Matar, J. Colloid Interface Sci. 306, 368 (2007).
http://dx.doi.org/10.1016/j.jcis.2006.10.063
5.
5.M. Muselli and D. Beysens, Science & Vie 1091, 90 (2008).
6.
6.C. Andrieu, D. A. Beysens, V. S. Nikolayev, and Y. Pomeau, J. Fluid Mech. 453, 453 (2002).
http://dx.doi.org/10.1017/S0022112001007121
7.
7.R. Narhe, D. Beysens, and V. S. Nikolayev, Langmuir 20, 1213 (2004).
http://dx.doi.org/10.1021/la034991g
8.
8.R. Narhe, D. Beysens, and V. S. Nikolayev, Int. J. Thermophys. 26, 1743 (2005).
http://dx.doi.org/10.1007/s10765-005-8593-4
9.
9.N. Kapur and P. H. Gaskell, Phys. Rev. E 75, 056315 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.056315
10.
10.R. D. Narhe, D. A. Beysens, and Y. Pomeau, EPL 81, 46002 (2008).
http://dx.doi.org/10.1209/0295-5075/81/46002
11.
11.J. A. Diez and L. Kondic, J. Comput. Phys. 183, 274 (2002).
http://dx.doi.org/10.1006/jcph.2002.7197
12.
12.A. Menchaca-Rocha, A. Martínez-Dávalos, R. Núñez, S. Popinet, and S. Zaleski, Phys. Rev. E 63, 046309 (2001).
http://dx.doi.org/10.1103/PhysRevE.63.046309
13.
13.L. H. Tanner, J. Phys. D 12, 1473 (1979).
http://dx.doi.org/10.1088/0022-3727/12/9/009
14.
14.L. W. Schwartz and R. R. Eley, J. Colloid Interface Sci. 202, 173 (1998).
http://dx.doi.org/10.1006/jcis.1998.5448
15.
15.J. Diez, L. Kondic, and A. L. Bertozzi, Phys. Rev. E 63, 011208 (2000).
http://dx.doi.org/10.1103/PhysRevE.63.011208
16.
16.P. H. Gaskell, P. K. Jimack, M. Sellier, and H. M. Thompson, Int. J. Numer. Methods Fluids 45, 1161 (2004).
http://dx.doi.org/10.1002/fld.632
17.
17.M. Sellier, Y. -C. Lee, H. M. Thompson, and P. H. Gaskell, Comput. Fluids 38, 171 (2009).
http://dx.doi.org/10.1016/j.compfluid.2008.01.008
18.
18.M. Sellier and S. Panda, Int. J. Numer. Methods Fluids (unpublished); (http://www3.interscience.wiley.com/journal/108061200/issue).
19.
19.R. Ferreira and F. Bernis, Eur. J. Appl. Math. 8, 507 (1997).
http://dx.doi.org/10.1017/S0956792597003197
20.
20.T. J. Collins, BioTechniques 43, S25 (2007).
http://dx.doi.org/10.2144/000112517
21.
21.J. Lopez, C. A. Miller, and E. Ruckenstein, J. Colloid Interface Sci. 56, 460 (1976).
http://dx.doi.org/10.1016/0021-9797(76)90111-9
22.
22.H. E. Huppert, J. Fluid Mech. 121, 43 (1982).
http://dx.doi.org/10.1017/S0022112082001797
23.
23.R. Chebbi, J. Colloid Interface Sci. 300, 688 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.04.018
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3154552
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3154552
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3154552
2009-06-19
2014-12-22

Abstract

This paper proposes a simple scenario to describe the coalescence of sessile droplets. This scenario predicts a power-law growth of the bridge between the droplets. The exponent of this power law depends on the driving mechanism for the spreading of each droplet. To validate this simple idea, the coalescence is simulated numerically and a basic experiment is performed. The fluid dynamics problem is formulated in the lubrication approximation framework and the governing equations are solved in the commercial finite element software COMSOL. Although a direct comparison of the numerical results with experiment is difficult because of the sensitivity of the coalescence to the initial and operating conditions, the key features of the event are qualitatively captured by the simulation and the characteristic time scale of the dynamics recovered. The experiment consists of inducing coalescence by pumping a droplet through a substrate which grows and ultimately coalesces with another droplet resting on the substrate. The coalescence was recorded using high-speed imaging and also confirmed the power-law growth of the neck.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3154552.html;jsessionid=1du85wkor73qy.x-aip-live-06?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3154552&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Modeling the coalescence of sessile droplets
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3154552
10.1063/1.3154552
SEARCH_EXPAND_ITEM