1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Transport properties and induced voltage in the structure of water-filled single-walled boron-nitrogen nanotubes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/2/10.1063/1.3158618
1.
1.D. Mattia and Y. Gogotsi, Microfluid. Nanofluid. 5, 289 (2008).
http://dx.doi.org/10.1007/s10404-008-0293-5
2.
2.A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, Nanotoday 2, 22 (2007).
3.
3.M. Whitby and N. Quirke, Nat. Nanotechnol. 2, 87 (2007).
http://dx.doi.org/10.1038/nnano.2006.175
4.
4.G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London) 414, 188 (2001).
http://dx.doi.org/10.1038/35102535
5.
5.Y. C. Liu and Q. Wang, Phys. Rev. B 72, 085420 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085420
6.
6.D. J. Mann and M. D. Halls, Phys. Rev. Lett. 90, 195503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.195503
7.
7.P. Král and M. Shapiro, Phys. Rev. Lett. 86, 131 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.131
8.
8.S. Ghosh, A. K. Sood, and N. Kumar, Science 299, 1042 (2003).
http://dx.doi.org/10.1126/science.1079080
9.
9.S. Ghosh, A. K. Sood, S. Ramaswamy, and N. Kumar, Phys. Rev. B 70, 205423 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205423
10.
10.Y. C. Zhao, L. Song, K. Deng, Z. Liu, Z. X. Zhang, Y. L. Yang, C. Wang, H. F. Yang, A. Z. Jin, Q. Luo, C. Z. Gu, S. S. Xie, and L. F. Sun, Adv. Mater. (Weinheim, Ger.) 20, 1772 (2008).
http://dx.doi.org/10.1002/adma.200702956
11.
11.Q. Z. Yuan and Y. P. Zhao, J. Am. Chem. Soc. 131, 63746376 (2009).
12.
12.X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).
http://dx.doi.org/10.1209/0295-5075/28/5/007
13.
13.Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, Appl. Phys. Lett. 84, 2430 (2004).
http://dx.doi.org/10.1063/1.1667278
14.
14.C. Y. Won and N. R. Aluru, J. Am. Chem. Soc. 129, 2748 (2007).
http://dx.doi.org/10.1021/ja0687318
15.
15.C. Y. Won and N. R. Aluru, J. Phys. Chem. C 112, 1812 (2008).
http://dx.doi.org/10.1021/jp076747u
16.
16.H. Sun, J. Phys. Chem. B 102, 7338 (1998).
http://dx.doi.org/10.1021/jp980939v
17.
17.W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
18.
18.M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature (London) 438, 44 (2005).
http://dx.doi.org/10.1038/43844a
19.
19.A. Kalra, S. Garde, and G. Hummer, Proc. Natl. Acad. Sci. U.S.A. 100, 10175 (2003).
http://dx.doi.org/10.1073/pnas.1633354100
20.
20.F. Q. Zhu, E. Tajkhorshid, and K. Schulten, Biophys. J. 83, 154 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75157-6
21.
21.R. Z. Wan, J. Y. Li, H. J. Lu, and H. P. Fang, J. Am. Chem. Soc. 127, 7166 (2005).
http://dx.doi.org/10.1021/ja050044d
22.
22.J. Y. Li, X. J. Gong, H. J. Lu, D. Li, H. P. Fang, and R. H. Zhou, Proc. Natl. Acad. Sci. U.S.A. 104, 3687 (2007).
http://dx.doi.org/10.1073/pnas.0604541104
23.
23.R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (Hilger, London, 1989).
24.
24.S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
25.
25.M. J. Frisch, G. W. Trudes, H. B. Schlegel et al., GAUSSIAN03, Revision D.01, Gaussian, Inc., Wallingford, CT, 2004.
26.
26.R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Nano Lett. 3, 589 (2003).
http://dx.doi.org/10.1021/nl0340226
27.
27.C. Y. Won, S. Joseph, and N. R. Aluru, J. Chem. Phys. 125, 114701 (2006).
http://dx.doi.org/10.1063/1.2338305
28.
28.A. Waghe, J. C. Rasaiah, and G. Hummer, J. Chem. Phys. 117, 10789 (2002).
http://dx.doi.org/10.1063/1.1519861
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3158618
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3158618
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3158618
2009-06-18
2014-11-29

Abstract

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube(SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3158618.html;jsessionid=12fuk0nfywgq7.x-aip-live-02?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3158618&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transport properties and induced voltage in the structure of water-filled single-walled boron-nitrogen nanotubes
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3158618
10.1063/1.3158618
SEARCH_EXPAND_ITEM