1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Induced charge electro osmotic mixer: Obstacle shape optimization
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/3/2/10.1063/1.3167279
1.
1.G. M. Whitesides, Nature (London) 442, 368 (2006).
http://dx.doi.org/10.1038/nature05058
2.
2.H. C. Chang, Can. J. Chem. Eng. 84, 146 (2006).
http://dx.doi.org/10.1139/V05-242
3.
3.P. S. Dittrich and A. Manz, Nat. Rev. Drug Discovery 5, 210 (2006).
http://dx.doi.org/10.1038/nrd1985
4.
4.A. Manz and J. C. T. Eijkel, Pure Appl. Chem. 73, 1555 (2001).
http://dx.doi.org/10.1351/pac200173101555
5.
5.H. A. Stone and S. Kim, AIChE J. 47, 1250 (2001).
http://dx.doi.org/10.1002/aic.690470602
6.
6.H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
7.
7.T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.977
8.
8.R. J. Hunter, Zeta Potential in Colloid Science: Principals and Applications (Academic, New York, 1981).
9.
9.T. M. Squires and M. Z. Bazant, J. Fluid Mech. 509, 217 (2004).
http://dx.doi.org/10.1017/S0022112004009309
10.
10.N. T. Nguyen and Z. G. Wu, J. Micromech. Microeng. 15, R1 (2005).
http://dx.doi.org/10.1088/0960-1317/15/2/R01
11.
11.C. C. Chang and R. J. Yang, Microfluid. Nanofluid. 3, 501 (2007).
http://dx.doi.org/10.1007/s10404-007-0178-z
12.
12.J. T. Coleman and D. Sinton, Microfluid. Nanofluid. 1, 319 (2005).
http://dx.doi.org/10.1007/s10404-005-0034-y
13.
13.E. Biddiss, D. Erickson, and D. Q. Li, Anal. Chem. 76, 3208 (2004).
http://dx.doi.org/10.1021/ac035451r
14.
14.A. D. Stroock, S. K. Dertinger, G. M. Whitesides, and A. Ajdari, Anal. Chem. 74, 5306 (2002).
http://dx.doi.org/10.1021/ac0257389
15.
15.M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, Anal. Chem. 73, 5822 (2001).
http://dx.doi.org/10.1021/ac0155411
16.
16.C. K. Chen and C. C. Cho, J. Colloid Interface Sci. 312, 470 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.03.033
17.
17.Z. M. Wu and D. Q. Li, Microfluid. Nanofluid. 5, 65 (2008).
http://dx.doi.org/10.1007/s10404-007-0227-7
18.
18.Z. M. Wu and D. Q. Li, Electrochim. Acta 53, 5827 (2008).
http://dx.doi.org/10.1016/j.electacta.2008.03.039
19.
19.M. Jain, A. Yeung, and K. Nandakumar, J. Microelectromech. Syst. 18, 376 (2009).
http://dx.doi.org/10.1109/JMEMS.2008.2010849
20.
20.N. I. Gamayunov, V. A. Murtsovkin, and A. S. Dukhin, Colloid J. USSR 48, 197 (1986).
21.
21.V. A. Murtsovkin, Colloid J. 58, 341 (1996).
22.
22.A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, Phys. Rev. E 61, 4019 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.4019
23.
23.M. Z. Bazant and T. M. Squires, Phys. Rev. Lett. 92, 066101 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.066101
24.
24.J. A. Levitan, S. Devasenathipathy, V. Studer, Y. X. Ben, T. Thorsen, T. M. Squires, and M. Z. Bazant, Colloids Surf., A 267, 122 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.06.050
25.
25.T. M. Squires and M. Z. Bazant, J. Fluid Mech. 560, 65 (2006).
http://dx.doi.org/10.1017/S0022112006000371
26.
26.H. Zhao and H. H. Bau, Langmuir 23, 4053 (2007).
http://dx.doi.org/10.1021/la063224p
27.
27.L. Piegl and W. Tiller, The NURBS Book (Springer-Verlag, New York, 1997).
28.
28.F. Z. Tian, B. M. Li, and D. Y. Kwok, Langmuir 21, 1126 (2005).
http://dx.doi.org/10.1021/la048203e
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3167279
Loading
/content/aip/journal/bmf/3/2/10.1063/1.3167279
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/2/10.1063/1.3167279
2009-06-30
2014-12-18

Abstract

Efficient mixing is difficult to achieve in miniaturized devices due to the nature of low Reynolds number flow. Mixing can be intentionally induced, however, if conducting or nonconducting obstacles are embedded within the microchannel. In the case of conducting obstacles, vortices can be generated in the vicinity of the obstacle due to induced charge electro-osmosis (ICEO) which enhances mixing of different streams: the obstacle shape affects the induced zeta potential on the conductingsurface, which in turn influences the flow profile near the obstacle. This study deals with optimization of the geometric shape of a conducting obstacle for the purpose of micromixing. The obstacle boundary is parametrically represented by nonuniform rational B-spline curves. The optimal obstacle shape, which maximizes the mixing for given operating conditions, is found using genetic algorithms. Various case studies at different operating conditions demonstrated that the near right triangle shape provides optimal mixing in the ICEO flow dominant regime, whereas rectangular shape is the optimal shape in diffusion dominant regime. The tradeoff between mixing and transport is examined for symmetric and nonsymmetric obstacle shapes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/2/1.3167279.html;jsessionid=16txmx156pfpq.x-aip-live-03?itemId=/content/aip/journal/bmf/3/2/10.1063/1.3167279&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Induced charge electro osmotic mixer: Obstacle shape optimization
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/2/10.1063/1.3167279
10.1063/1.3167279
SEARCH_EXPAND_ITEM