Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/3/10.1063/1.3187149
1.
1.C. Spegel, A. Heiskanen, L. H. D. Skjolding, and J. Emneus, Electroanalysis 20, 680 (2008).
http://dx.doi.org/10.1002/elan.200704130
2.
2.A. Han and A. B. Frazier, Lab Chip 6, 1412 (2006).
http://dx.doi.org/10.1039/b608930e
3.
3.K. -H. Han, A. Han, and A. B. Frazier, Biosens. Bioelectron. 21, 1907 (2006).
http://dx.doi.org/10.1016/j.bios.2006.01.024
4.
4.S. Gawad, L. Schild, and P. Renaud, Lab Chip 1, 76 (2001).
http://dx.doi.org/10.1039/b103933b
5.
5.K. Cheung, S. Gawad, and P. Renaud, Cytometry, Part A 65A, 124 (2005).
http://dx.doi.org/10.1002/cyto.a.20141
6.
6.D. D. Carlo and L. P. Lee, Anal. Chem. 78, 7918 (2006).
http://dx.doi.org/10.1021/ac069490p
7.
7.A. B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P. N. Marche, M. Tartagni, R. Guerrieri, F. Chatelain, and N. Manaresi, Lab Chip 6, 121 (2006).
http://dx.doi.org/10.1039/b505884h
8.
8.S. K. Mohanty, S. K. Ravula, K. Engisch, and A. B. Frazier, “A MicroAnalysis System Using Dielectrophoresis and Micro Electrical Impedance Spectroscopy for Cell Manipulation and Analysis,” Proceedings of Transducers ’03: 12th International Conference on Solid State Sensors and Actuators Microsystems, Boston, MA (June 8–12, 2003), Vol. 2, pp. 10551058.
9.
9.L. L. Sohn, O. A. Saleh, G. R. Facer, A. J. Beavis, R. S. Allan, and D. A. Notterman, Proc. Natl. Acad. Sci. U.S.A. 97, 10687 (2000).
http://dx.doi.org/10.1073/pnas.200361297
10.
10.P. R. C. Gascoyne and J. Vykoukal, Electrophoresis 23, 1973 (2002).
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
11.
11.S. Gawad, K. Cheung, U. Seger, A. Bertsch, and P. Renaud, Lab Chip 4, 241 (2004).
http://dx.doi.org/10.1039/b313761a
12.
12.J. C. Weaver, in Electroporation Protocols for Microorganisms, edited by J. A. Nickoloff (Humana, Totowa, NJ, 1995), Vol. 47, Chap. 1, pp. 125.
13.
13.J. C. Weaver, IEEE Trans. Plasma Sci. 28, 24 (2000).
http://dx.doi.org/10.1109/27.842820
14.
14.T. R. Gowrishankar and J. C. Weaver, Proc. Natl. Acad. Sci. U.S.A. 100, 3203 (2003).
http://dx.doi.org/10.1073/pnas.0636434100
15.
15.Electroporation Based Technologies and Treatments, edited by P. Kramar and D. Miklavčič, University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia (Založba FE in FRI, Ljubljana, 2003).
16.
16.H. Lu, M. A. Schmidt, and K. F. Jensen, Lab Chip 5, 23 (2005).
http://dx.doi.org/10.1039/b406205a
17.
17.M. Pavlin, M. Kandušer, M. Reberšek, G. Pucihar, F. X. Hart, R. Magjarević, and D. Miklavčič, Biophys. J. 88, 4378 (2005).
http://dx.doi.org/10.1529/biophysj.104.048975
18.
18.B. Rubinsky, Technol. Cancer Res. Treat. 6, 255 (2007).
19.
19.T. D. Tran, M.S. thesis, University of Manitoba, 2001.
20.
20.G. A. Ferrier, A. N. Hladio, D. J. Thomson, G. E. Bridges, M. Hedayatipoor, S. Olson, and M. R. Freeman, Biomicrofluidics 2, 044102 (2008).
http://dx.doi.org/10.1063/1.2992127
21.
21.X. Niu, M. Zhang, S. Peng, W. Wen, and P. Sheng, Biomicrofluidics 1, 044101 (2007).
http://dx.doi.org/10.1063/1.2795392
22.
22.C. Reichle, T. Schnelle, T. Müller, T. Leya, and G. Fuhr, Biochim. Biophys. Acta 1459, 218 (2000).
http://dx.doi.org/10.1016/S0005-2728(00)00150-X
23.
23.D. Mietchen, T. Schnelle, T. Müller, R. Hagedorn, and G. Fuhr, J. Phys. D: Appl. Phys. 35, 1258 (2002).
http://dx.doi.org/10.1088/0022-3727/35/11/324
24.
24.L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Butterworth-Heinemann, Burlington, 1984).
25.
25.J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
26.
26.T. B. Jones, Electromechanics of Particles (Cambridge University Press, New York, 1995).
27.
27.For a PSS in DI water, for example, relative dielectric permittivities are and , while respective conductivities are and . At gigahertz frequencies, both the sphere and the medium may be assumed lossless.
28.
28.J. B. Hasted, in Water—A Comprehensive Treatise, edited by F. Franks (Plenum, New York, 1972), Vol. 1, pp. 255309.
29.
29.R. Buchner, J. Barthel, and J. Stauber, Chem. Phys. Lett. 306, 57 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00455-8
30.
30.F. M. White, Fluid Mechanics, 5th ed. (McGraw-Hill, New York, 2003).
31.
31.Y. Huang, X. -B. Wang, F. F. Becker, and P. R. C. Gascoyne, Biophys. J. 73, 1118 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78144-X
32.
32.D. K. Wood, M. V. Requa, and A. N. Cleland, Rev. Sci. Instrum. 78, 104301 (2007).
http://dx.doi.org/10.1063/1.2794230
33.
33.X. -B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker, and P. R. C. Gascoyne, Anal. Chem. 72, 832 (2000).
http://dx.doi.org/10.1021/ac990922o
34.
34.H. Saito, Y. Suzuki, and M. Taki, Proceedings of the XXIXth URSI General Assembly, Chicago, IL, 2008 (please see http://ursi-test.intec.ugent.be/files/URSIGA08/start.pdf or http://ursi-test.intec.ugent.be/files/URSIGA08/papers/K01p2.pdf).
35.
35.D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, New York, 2005).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/3/10.1063/1.3187149
Loading
/content/aip/journal/bmf/3/3/10.1063/1.3187149
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/3/10.1063/1.3187149
2009-08-12
2016-09-27

Abstract

We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells—baker’s yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells—are presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/3/1.3187149.html;jsessionid=i5973zu8B9Owmhreo_nra8_c.x-aip-live-03?itemId=/content/aip/journal/bmf/3/3/10.1063/1.3187149&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/3/10.1063/1.3187149&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/3/10.1063/1.3187149'
Right1,Right2,Right3,