Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. K. Sia and G. M. Whitesides, Electrophoresis 24, 3563 (2003).
2.J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, Electrophoresis 23, 3461 (2002).<3461::AID-ELPS3461>3.0.CO;2-8
3.T. Fujii, Microelectron. Eng. 61–62, 907 (2002).
4.J. M. Edwards, M. N. Hamblin, H. V. Fuentes, B. A. Peeni, M. L. Lee, A. T. Woolley, and A. R. Hawkins, Biomicrofluidics 1, 014101 (2007).
5.H. Ohshima and K. Furusawa (Marcel Dekker, New York, 1998).
6.Z. A. Almutairi, T. Glawdel, C. L. Ren, and D. A. Johnson, International Mechanical Engineering Congress and Exposition 2007, Vol 11 Pt a and Pt B: Micro and Nano Systems 893 (2008).
7.H. Choi, K. B. Lee, K. R. Yoon, I. S. Choi, S. I. Woo, K. Choi, S. C. Lee, and Y. Kim, Bull. Korean Chem. Soc. 25, 560 (2004).
8.S. Dasgupta, A. A. S. Bhagat, M. Horner, I. Papautsky, and R. K. Banerjee, Microfluidics and Nanofluidics 5, 185 (2008).
9.X. Q. Ren, M. Bachman, C. Sims, G. P. Li, and N. Allbritton, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 762, 117 (2001).
10.H. Shadpour, H. Musyimi, J. F. Chen, and S. A. Soper, J. Chromatogr. A 1111, 238 (2006).
11.A. M. Spehar, S. Koster, V. Linder, S. Kulmala, N. F. de Rooij, E. Verpoorte, H. Sigrist, and W. Thormann, Electrophoresis 24, 3674 (2003).
12.A. Sze, D. Erickson, L. Q. Ren, and D. Q. Li, J. Colloid Interface Sci. 261, 402 (2003).
13.R. Venditti, X. C. Xuan, and D. Q. Li, Microfluidics and Nanofluidics 2, 493 (2006).
14.N. Bao, J. J. Xu, Q. Zhang, J. L. Hang, and H. Y. Chen, J. Chromatogr. A 1099, 203 (2005).
15.J. A. Vickers, M. M. Caulum, and C. S. Henry, Anal. Chem. 78, 7446 (2006).
16.D. Ross, T. J. Johnson, and L. E. Locascio, Anal. Chem. 73, 2509 (2001).
17.D. Ross and L. E. Locascio, Anal. Chem. 75, 1218 (2003).
18.S. Devasenathipathy, J. G. Santiago, and K. Takehara, Anal. Chem. 74, 3704 (2002).
19.Y. Q. Luo, B. Huang, H. Wu, and R. N. Zare, Anal. Chem. 78, 4588 (2006).
20.G. T. Roman, T. Hlaus, K. J. Bass, T. G. Seelhammer, and C. T. Culbertson, Anal. Chem. 77, 1414 (2005).
21.B. J. Kirby and E. F. Hasselbrink, Electrophoresis 25, 187 (2004).
22.F. Zhou, W. Wang, W. Y. Wu, J. R. Zhang, and J. J. Zhu, J. Chromatogr. A 1194, 221 (2008).
23.X. H. Huang, M. J. Gordon, and R. N. Zare, Anal. Chem. 60, 1837 (1988).
24.W. Schrott, M. Pribyl, J. Stepanek, and D. Snita, Microelectron. Eng. 85, 1100 (2008).
25.G. Sagvolden, I. Giaever, and J. Feder, Langmuir 14, 5984 (1998).
26.R. F. Probstein, Physicochemical hydrodynamics: An Introduction, 2nd ed. (Wiley and Sons, New York, 1994).
27.T. Postler, Z. Slouka, M. Svoboda, M. Pribyl, and D. Snita, J. Colloid Interface Sci. 320, 321 (2008).
28.Z. Slouka, M. Pribyl, D. Snita, and T. Postler, Phys. Chem. Chem. Phys. 9, 5374 (2007).
29.W. M. Deen, Analysis of Transport Phenomena (Oxford University Press, New York, 1998).
30.S. H. Chang, Biomicrofluidics 3, 012802 (2009).
31.M. M. Browne, G. V. Lubarsky, M. R. Davidson, and R. H. Bradley, Surf. Sci. 553, 155 (2004).
32.J. E. Puskas, Y. Dahman, and A. Margaritis, Biomacromolecules 5, 1412 (2004).
33.M. Tencer, R. Charbonneau, N. Lahoud, and P. Berini, Appl. Surf. Sci. 253, 9209 (2007).
34.Y. W. Huang and V. K. Gupta, J. Chem. Phys. 121, 2264 (2004).
35.J. E. Butler, E. P. Lu, P. Navarro, and B. Christiansen, J. Mol. Recognit. 10, 36 (1997).<36::AID-JMR353>3.0.CO;2-G
36.U. Bohme and U. Scheler, Chem. Phys. Lett. 435, 342 (2007).
37.Y. L. Gao, G. Q. Hu, F. Y. H. Lin, P. M. Sherman, and D. Q. Li, Biomed. Microdevices 7, 301 (2005).
38.W. B. Blanch and D. S. Clark, Biochemical Engineering (Marcel Dekker, New York, 1997).
39.G. Ocvirk, M. Munroe, T. Tang, R. Oleschuk, K. Westra, and D. J. Harrison, Electrophoresis 21, 107 (2000).<107::AID-ELPS107>3.0.CO;2-Y

Data & Media loading...


Article metrics loading...



Electrokinetic properties and morphology of PDMS microfluidic chips intended for bioassays are studied. The chips are fabricated by a casting method followed by polymerization bonding. Microchannels are coated with 1% solution of bovine serum albumin (BSA) in Tris buffer. Albumin passively adsorbs on the PDMSsurface. Electrokinetic characteristics (electro-osmotic velocity, electro-osmoticmobility, and zeta potential) of the coated PDMS channels are experimentally determined as functions of the electric field strength and the characteristic electrolyte concentration. Atomic force microscopy(AFM) analysis of the surface reveals a “peak and ridge” structure of the protein layer and an imperfect substrate coating. On the basis of the AFM observation, several topologies of the BSA-PDMS surface are proposed. A nonslip mathematical model of the electro-osmotic flow is then numerically analyzed. It is found that the electrokinetic characteristics computed for a channel with the homogeneous distribution of a fixed electric charge do not fit the experimental data. Heterogeneous distribution of the fixed electric charge and the surface roughness is thus taken into account. When a flat PDMSsurface with electric charge heterogeneities is considered, the numerical results are in very good agreement with our experimental data. An optimization analysis finally allowed the determination of the surface concentration of the electric charge and the degree of the PDMSsurface coating. The obtained findings can be important for correct prediction and possibly for robust control of behavior of electrically driven PDMS microfluidic chips. The proposed method of the electro-osmotic flow analysis at surfaces with a heterogeneous distribution of the surfaceelectric charge can also be exploited in the interpretation of experimental studies dealing with protein-solid phase interactions or substrate coatings.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd