Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/4/10.1063/1.3250303
1.
1.S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Lab Chip 8, 198 (2008).
http://dx.doi.org/10.1039/b715524g
2.
2.B. T. Kelly, J. C. Baret, V. Taly, and A. D. Griffiths, Chem. Commun. (Cambridge) 2007, 1773.
http://dx.doi.org/10.1039/b616252e
3.
3.V. Taly, B. T. Kelly, and A. D. Griffiths, ChemBioChem 8, 263 (2007).
http://dx.doi.org/10.1002/cbic.200600425
4.
4.H. Song, D. L. Chen, and R. F. Ismagilov, Angew. Chem., Int. Ed. 45, 7336 (2006).
http://dx.doi.org/10.1002/anie.200601554
5.
5.A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, Lab Chip 8, 1244 (2008).
http://dx.doi.org/10.1039/b806405a
6.
6.M. Joanicot and A. Ajdari, Science 309, 887 (2005).
http://dx.doi.org/10.1126/science.1112615
7.
7.V. Cristini and Y. C. Tan, Lab Chip 4, 257 (2004).
http://dx.doi.org/10.1039/b403226h
8.
8.Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, Lab Chip 4, 292 (2004).
http://dx.doi.org/10.1039/b403280m
9.
9.Y. C. Tan, Y. L. Ho, and A. P. Lee, Microfluid. Nanofluid. 4, 343 (2008).
http://dx.doi.org/10.1007/s10404-007-0184-1
10.
10.C. -H. Yang, Y. -S. Lin, K. -S. Huang, Y. -C. Huang, E. -C. Wang, J. -Y. Jhong, and C. -Y. Kuo, Lab Chip 9, 145 (2009).
http://dx.doi.org/10.1039/b807454b
11.
11.C. -Y. Lee, Y. -H. Lin, and G. -B. Lee, Microfluid. Nanofluid. 6, 599 (2009).
http://dx.doi.org/10.1007/s10404-008-0340-2
12.
12.C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, Lab Chip 7, 1029 (2007).
http://dx.doi.org/10.1039/b702472j
13.
13.T. Franke, A. R. Abate, D. A. Weitz, and A. Wixforth, Lab Chip 9, 2625 (2009).
http://dx.doi.org/10.1039/b906819h
14.
14.D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. D. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Angew. Chem., Int. Ed. 45, 2556 (2006).
http://dx.doi.org/10.1002/anie.200503540
15.
15.K. Ahn, C. Kerbage, T. P. Hunt, R. M. Westervelt, D. R. Link, and D. A. Weitz, Appl. Phys. Lett. 88, 024104 (2006).
http://dx.doi.org/10.1063/1.2164911
16.
16.H. M. Shapiro, Practical Flow Cytometry, 4th ed. (Wiley, New York, 2003).
17.
17.G. Durack and J. P. Robinson, Emerging Tools for Single-Cell Analysis: Advances in Optical Measurement Technologies (Wiley, New York, 2000).
18.
18.M. Eisenstein, Nature (London) 441, 1179 (2006).
http://dx.doi.org/10.1038/4411179a
19.
19.D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. Takayama, Physiol. Meas. 26, R73 (2005).
http://dx.doi.org/10.1088/0967-3334/26/3/R02
20.
20.O. Raccurt, J. Berthier, P. Clementz, M. Borella, and M. Plissonnier, J. Micromech. Microeng. 17, 2217 (2007).
http://dx.doi.org/10.1088/0960-1317/17/11/007
21.
21.Y. C. Tan, V. Cristini, and A. P. Lee, Sens. Actuators B 114, 350 (2006).
http://dx.doi.org/10.1016/j.snb.2005.06.008
22.
22.N. Dubash and A. J. Mestel, Phys. Fluids 19, 072101 (2007).
http://dx.doi.org/10.1063/1.2742702
23.
23.Y. H. Zhan, J. Wang, N. Bao, and C. Lu, Anal. Chem. 81, 2027 (2009).
http://dx.doi.org/10.1021/ac9001172
24.
24.D. W. Lee and Y. H. Cho, Sens. Actuators B 124, 84 (2007).
http://dx.doi.org/10.1016/j.snb.2006.11.054
25.
25.J. Gao, X. F. Yin, and Z. L. Fang, Lab Chip 4, 47 (2004).
http://dx.doi.org/10.1039/b310552k
26.
26.S. W. Lee and Y. C. Tai, Sens. Actuators, A 73, 74 (1999).
http://dx.doi.org/10.1016/S0924-4247(98)00257-X
27.
27.F. Malloggi, S. A. Vanapalli, H. Gu, D. van den Ende, and F. Mugele, J. Phys.: Condens. Matter 19, 462101 (2007).
http://dx.doi.org/10.1088/0953-8984/19/46/462101
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/4/10.1063/1.3250303
Loading
/content/aip/journal/bmf/3/4/10.1063/1.3250303
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/4/10.1063/1.3250303
2009-10-13
2016-09-28

Abstract

This paper presents a droplet-based microfluidic device for concurrent droplet charging and sorting by electrostatic actuation. Water-in-oil droplets can be charged on generation by synchronized electrostatic actuation. Then, simultaneously, the precharged droplets can be electrostatically steered into any designated laminar streamline, thus they can be sorted into one of multiple sorting channels one by one in a controlled fashion. In this paper, we studied the size dependence of the water droplets under various relative flow rates of water and oil. We demonstrated the concurrent charging and sorting of up to 600 droplets/s by synchronized electrostatic actuation. Finally, we investigated optimized voltages for stable droplet charging and sorting. This is an essential enabling technology for fast, robust, and multiplexed sorting of microdroplets, and for the droplet-based microfluidic systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/4/1.3250303.html;jsessionid=JC2xssV_oQc1Y3u0tobgNLff.x-aip-live-02?itemId=/content/aip/journal/bmf/3/4/10.1063/1.3250303&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/4/10.1063/1.3250303&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/4/10.1063/1.3250303'
Right1,Right2,Right3,