Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/3/4/10.1063/1.3251125
1.
1.R. Pethig, M. S. Talary, and R. S. Lee, IEEE Eng. Med. Biol. Mag. 22, 43 (2003).
http://dx.doi.org/10.1109/MEMB.2003.1266046
2.
2.L. Cui, D. Holmes, and H. Morgan, Electrophoresis 22, 3893 (2001).
http://dx.doi.org/10.1002/1522-2683(200110)22:18<3893::AID-ELPS3893>3.0.CO;2-2
3.
3.E. B. Cummings and A. K. Singh, Anal. Chem. 75, 4724 (2003).
http://dx.doi.org/10.1021/ac0340612
4.
4.C. Iliescu, G. L. Xu, F. C. Loe, P. L. Ong, and F. E. H. Tay, Electrophoresis 28, 1107 (2007).
http://dx.doi.org/10.1002/elps.200600431
5.
5.G. O. F. Parikesit, A. P. Makesteijn, O. M. Piciu, A. Bossche, J. Westerweel, I. T. Young, and Y. Garini, Biomicrofluidics 2, 024103 (2008).
http://dx.doi.org/10.1063/1.2930817
6.
6.P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature (London) 436, 370 (2005).
http://dx.doi.org/10.1038/nature03831
7.
7.C. H. Kua, Y. C. Lam, I. Rodriguez, C. Yang, and K. Y. Toumi, Anal. Chem. 79, 6975 (2007).
http://dx.doi.org/10.1021/ac070810u
8.
8.S. Masuda, M. Washizu, and T. Nanba, IEEE Trans. Ind. Appl. 25, 732 (1989).
http://dx.doi.org/10.1109/28.31255
9.
9.J. Park, B. Kim, S. K. Choi, H. Su, S. H. Lee, and K. I. Lee, Lab Chip 5, 1264 (2005).
http://dx.doi.org/10.1039/b506803g
10.
10.J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, J. Electrost. 57, 69 (2003).
http://dx.doi.org/10.1016/S0304-3886(02)00120-1
11.
11.B. Y. Park and M. J. Madou, Electrophoresis 26, 3745 (2005).
http://dx.doi.org/10.1002/elps.200500138
12.
12.C. Iliescu, G. L. Xu, V. Samper, and F. E. H. Tay, J. Micromech. Microeng. 15, 494 (2005).
http://dx.doi.org/10.1088/0960-1317/15/3/009
13.
13.C. Iliescu, L. M. Yu, G. L. Xu, and F. E. H. Tay, J. Microelectromech. Syst. 15, 1506 (2006).
http://dx.doi.org/10.1109/JMEMS.2006.883567
14.
14.G. H. Markx and R. Pethig, Biotechnol. Bioeng. 45, 337 (1995).
http://dx.doi.org/10.1002/bit.260450408
15.
15.D. Holmes, N. G. Green, and H. Morgan, IEEE Eng. Med. Biol. Mag. 22, 85 (2003).
http://dx.doi.org/10.1109/MEMB.2003.1266051
16.
16.L. Gorre-Talini, J. P. Spatz, and P. Silberzan, Chaos 8, 650 (1998).
http://dx.doi.org/10.1063/1.166347
17.
17.C. Iliescu, G. Tresset, and G. Xu, Appl. Phys. Lett. 90, 234104 (2007).
http://dx.doi.org/10.1063/1.2747187
18.
18.L. M. Yu, C. Iliescu, G. L. Xu, and F. E. H. Tay, J. Microelectromech. Syst. 16, 1120 (2007).
http://dx.doi.org/10.1109/JMEMS.2007.901136
19.
19.C. Iliescu, L. Yu, F. E. H. Tay, and B. Chen, Sens. Actuators B 129, 491 (2008).
http://dx.doi.org/10.1016/j.snb.2007.11.023
20.
20.M. P. Hughes, Electrophoresis 23, 2569 (2002).
http://dx.doi.org/10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M
21.
21.P. R. C. Gascoyne and J. Vykoukal, Electrophoresis 23, 1973 (2002).
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
22.
22.H. Morgan, A. G. Izquierdo, D. Bakewell, N. G. Green, and A. Ramos, J. Phys. D 34, 1553 (2001).
http://dx.doi.org/10.1088/0022-3727/34/10/316
23.
23.R. Pethig, J. P. H. Burt, A. Parton, N. Rizvi, M. S. Talary, and J. A. Tame, J. Micromech. Microeng. 8, 57 (1998).
http://dx.doi.org/10.1088/0960-1317/8/2/004
24.
24.J. Kentsch, M. Durr, T. Schnelle, G. Gradl, T. Muller, M. Jager, A. Normann, and M. Stelzle, IEE Proc.: Nanobiotechnol. 150, 82 (2003).
http://dx.doi.org/10.1049/ip-nbt:20031127
25.
25.F. E. H. Tay, L. Yu, A. J. Pang, and C. Iliescu, Electrochim. Acta 52, 2862 (2007).
http://dx.doi.org/10.1016/j.electacta.2006.09.022
26.
26.G. H. Markx, R. Pethig, and J. Rousselet, J. Phys. D 30, 2470 (1997).
http://dx.doi.org/10.1088/0022-3727/30/17/013
27.
27.C. Iliescu, G. L. Xu, P. L. Ong, and K. J. Leck, J. Micromech. Microeng. 17, S128 (2007).
http://dx.doi.org/10.1088/0960-1317/17/7/S10
28.
28.I. F. Cheng, H. C. Chang, D. Hou, and H. C. Chang, Biomicrofluidics 1, 021503 (2007).
http://dx.doi.org/10.1063/1.2723669
29.
29.K. H. Han and A. B. Frazier, Lab Chip 8, 1079 (2008).
http://dx.doi.org/10.1039/b802321b
30.
30.T. Rogers and J. Kowal, Sens. Actuators, A 46, 113 (1995).
http://dx.doi.org/10.1016/0924-4247(94)00872-F
31.
31.C. Iliescu, B. T. Chen, and J. M. Miao, Sens. Actuators, A 143, 154 (2008).
http://dx.doi.org/10.1016/j.sna.2007.11.022
32.
32.C. Iliescu, J. M. Miao, and F. E. H. Tay, Surf. Coat. Technol. 192, 43 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.03.043
33.
33.C. Iliescu, J. Miao, and F. E. H. Tay, Sens. Actuators, A 117, 286 (2005).
http://dx.doi.org/10.1016/j.sna.2004.03.004
34.
34.C. Iliescu, J. Jing, F. E. H. Tay, J. Miao, and T. T. Sun, Surf. Coat. Technol. 198, 314 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.10.094
35.
35.C. Iliescu, F. E. H. Tay, and J. Miao, Sens. Actuators, A 133, 395 (2007).
http://dx.doi.org/10.1016/j.sna.2006.06.044
36.
36.T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, England, 1995).
37.
37.L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1993).
38.
38.A. Ramos, H. Morgan, and N. G. Green, J. Phys. D 31, 2338 (1998).
http://dx.doi.org/10.1088/0022-3727/31/18/021
http://aip.metastore.ingenta.com/content/aip/journal/bmf/3/4/10.1063/1.3251125
Loading
/content/aip/journal/bmf/3/4/10.1063/1.3251125
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/3/4/10.1063/1.3251125
2009-10-21
2016-09-29

Abstract

This paper presents a field-flow method for separating particle populations in a dielectrophoretic(DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/3/4/1.3251125.html;jsessionid=-i-om3NwKRmyCpxA0sbDlo7R.x-aip-live-06?itemId=/content/aip/journal/bmf/3/4/10.1063/1.3251125&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/3/4/10.1063/1.3251125&pageURL=http://scitation.aip.org/content/aip/journal/bmf/3/4/10.1063/1.3251125'
Right1,Right2,Right3,