Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.L. M. Adleman, Science 266, 1021 (1994).
2.Q. Ouyang, P. D. Kaplan, S. M. Liu, and A. Libchaber, Science 278, 446 (1997).
3.G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree, Science 314, 1585 (2006).
4.C. R. Johnson, DNA Computing 4287, 360 (2006).
5.Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro, Nature (London) 414, 430 (2001).
6.Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro, Proc. Natl. Acad. Sci. U.S.A. 100, 2191 (2003).
7.R. Adar, Y. Benenson, G. Linshiz, A. Rosner, N. Tishby, and E. Shapiro, Proc. Natl. Acad. Sci. U.S.A. 101, 9960 (2004).
8.Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, Nature (London) 429, 423 (2004).
9.Y. Gao, Z. Shen, H. Wang, Z. P. Dai, and B. C. Lin, Electrophoresis 26, 4774 (2005).
10.J. Kong, L. Jiang, X. O. Su, J. H. Qin, Y. G. Du, and B. C. Lin, Lab Chip 9, 1541 (2009).
11.W. W. Shi, J. H. Qin, N. N. Ye, and B. C. Lin, Lab Chip 8, 1432 (2008).
12.R. T. Zhong, X. Y. Pan, L. Jiang, Z. P. Dai, J. H. Qin, and B. C. Lin, Electrophoresis 30, 1297 (2009).
13.N. N. Ye, J. H. Qin, W. W. Shi, X. Liu, and B. C. Lin, Lab Chip 7, 1696 (2007).
14.J. H. Qin, Z. Y. Liu, D. P. Wu, N. Zhu, X. M. Zhou, Y. S. Fung, and B. C. Lin, Electrophoresis 26, 219 (2005).
15.D. Y. Liu, M. Shi, H. Q. Huang, Z. C. Long, X. M. Zhou, J. H. Qin, and B. C. Lin, J. Chromatogr., B: Biomed. Sci. Appl. 844, 32 (2006).
16.W. H. Grover and R. A. Mathies, Lab Chip 5, 1033 (2005).
17.D. M. Kolpashchikov and M. N. Stojanovic, J. Am. Chem. Soc. 127, 12348 (2005).
18.K. Rinaudo, L. Bleris, R. Maddamsetti, S. Subramanian, R. Weiss, and Y. Benenson, Nat. Biotechnol. 25, 795 (2007).
19.Z. Sandalon, N. E. Fusenig, J. McCutcheon, L. B. Taichman, and J. A. Garlick, Gene Ther. 8, 232 (2001).
20.C. Bonini, A. Bondanza, S. K. Perna, S. Kaneko, C. Traversari, F. Ciceri, and C. Bordignon, Mol. Ther. 15, 1248 (2007).
21.L. L. Nakopoulou, D. Tsitsimelis, A. C. Lazaris, A. Tzonou, H. Gakiopoulou, C. C. Dicoglou, and P. S. Davaris, Cancer Detect. Prev. 23, 297 (1999).
22.S. Tommasi, V. Fedele, A. Crapolicchio, A. Bellizzi, A. Paradiso, and S. J. Reshkin, Int. J. Mol. Med. 12, 131 (2003).
23.R. T. Zhong, D. Y. Liu, L. F. Yu, N. N. Ye, Z. P. Dai, J. H. Qin, and B. C. Lin, Electrophoresis 28, 2920 (2007).
24.Z. M. Zhou, D. Y. Liu, R. T. Zhong, Z. P. Dai, D. P. Wu, H. Wang, Y. G. Du, Z. N. Xia, L. P. Zhang, X. D. Mei, and B. C. Lin, Electrophoresis 25, 3032 (2004).
25.G. Yershov, V. Barsky, A. Belgovskiy, E. Kirillov, E. Kreindlin, I. Ivanov, S. Parinov, D. Guschin, A. Drobishev, S. Dubiley, and A. Mirzabekov, Proc. Natl. Acad. Sci. U.S.A. 93, 4913 (1996).
26.K. G. Olsen, D. J. Ross, and M. J. Tarlov, Anal. Chem. 74, 1436 (2002).
27.R. A. Zangmeister and M. J. Tarlov, Langmuir 19, 6901 (2003).
28.R. A. Zangmeister and M. J. Tarlov, Anal. Chem. 76, 3655 (2004).
29.Y. Zhang, H. Yu, X. L. Dong, J. H. Qin, and B. C. Lin, Chem. J. Chin. Iniv. 30, 1128 (2009).
30.C. G. Koh, W. Tan, M. Q. Zhao, A. J. Ricco, and Z. H. Fan, Anal. Chem. 75, 6379 (2003).
31.R. Dhopeshwarkar, S. A. Li, and R. M. Crooks, Lab Chip 5, 1148 (2005).
32.J. Petersen, L. Poulsen, H. Birgens, and M. Dufva, PLoS ONE 4, e4808 (2009).
33.H. Xie, B. W. Li, R. T. Zhong, J. H. Qin, Y. S. Zhu, and B. C. Lin, Electrophoresis 29, 4956 (2008).

Data & Media loading...


Article metrics loading...



Boolean logic performs a logical operation on one or more logic input and produces a single logic output. Here, we describe a microfluidicDNA computing processor performing Boolean logic operations for gene expression analysis and gene drug synthesis. Multiple cancer-related genes were used as input molecules. Their expression levels were identified by interacting with the computing related DNA strands, which were designed according to the sequences of cancer-related genes and the suicide gene. When all the expressions of the cancer-related genes fit in with the diagnostic criteria, positive diagnosis would be confirmed and then a complete suicide gene (gene drug) could be synthesized as an output molecule. Microfluidic chip was employed as an effective platform to realize the computing process by integrating multistep biochemical reactions involving hybridization, displacement, denaturalization, and ligation. By combining the specific design of the computing related molecules and the integrated functions of the microfluidics, the microfluidicDNA computing processor is able to analyze the multiple gene expressions simultaneously and realize the corresponding gene drug synthesis with simplicity and fast speed, which demonstrates the potential of this platform for DNA computing in biomedical applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd