1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Optofluidic planar reactors for photocatalytic water treatment using solar energy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/4/4/10.1063/1.3491471
1.
1.D. Psaltis, S. R. Quake, and C. H. Yang, Nature (London) 442, 381 (2006).
http://dx.doi.org/10.1038/nature05060
2.
2.C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007).
http://dx.doi.org/10.1038/nphoton.2006.96
3.
3.A. Q. Liu, H. J. Huang, L. K. Chin, Y. F. YU, and X. C. Li, Anal. Bioanal. Chem. 391, 2443 (2008).
http://dx.doi.org/10.1007/s00216-008-1878-2
4.
4.J. M. Herrmann, Catal. Today 53, 115 (1999).
http://dx.doi.org/10.1016/S0920-5861(99)00107-8
5.
5.J. Mo, Y. Zhang, Q. Xu, J. J. Lamson, and R. Zhao, Atmos. Environ. 43, 2229 (2009).
http://dx.doi.org/10.1016/j.atmosenv.2009.01.034
6.
6.C. Wei, W. Lin, Z. Zainal, N. E. Williams, K. Zhu, A. P. Krurlc, R. L. Smith, and K. Rajeshwar, Environ. Sci. Technol. 28, 934 (1994).
http://dx.doi.org/10.1021/es00054a027
7.
7.Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Nature (London) 414, 625 (2001).
http://dx.doi.org/10.1038/414625a
8.
8.T. Van Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, Chem. Eng. Process. 46, 781 (2007).
http://dx.doi.org/10.1016/j.cep.2007.05.012
9.
9.H. Lu, M. A. Schmidt, and K. F. Jensen, Lab Chip 1, 22 (2001).
http://dx.doi.org/10.1039/b104037p
10.
10.G. Takei, T. Kitamori, and H. B. Kim, Catal. Commun. 6, 357 (2005).
http://dx.doi.org/10.1016/j.catcom.2005.02.010
11.
11.R. C. R. Wootton, R. Fortt, and A. J. de Mello, Org. Process Res. Dev. 6, 187 (2002).
http://dx.doi.org/10.1021/op0155155
12.
12.H. Lindstrom, R. Wootton, and A. Iles, AIChE J. 53, 695 (2007).
http://dx.doi.org/10.1002/aic.11096
13.
13.R. Gorges, S. Meyer, and G. Kreisel, J. Photochem. Photobiol., A 167, 95 (2004).
http://dx.doi.org/10.1016/j.jphotochem.2004.04.004
14.
14.D. Bahnemann, Sol. Energy 77, 445 (2004).
http://dx.doi.org/10.1016/j.solener.2004.03.031
15.
15.R. Goslich, R. Dillert, and D. W. Bahnemann, Water Sci. Technol. 35, 137 (1997).
http://dx.doi.org/10.1016/S0273-1223(97)00019-X
16.
16.M. K. Nazeeruddin, A. Kay, L. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993).
http://dx.doi.org/10.1021/ja00067a063
17.
17.D. Bartolo, G. Degré, P. Nghe, and V. Studer, Lab Chip 8, 274 (2008).
http://dx.doi.org/10.1039/b712368j
18.
18.H. Lin and K. T. Valsaraj, J. Appl. Electrochem. 35, 699 (2005).
http://dx.doi.org/10.1007/s10800-005-1364-x
19.
19.P. Nalini Vi jaya Laxmi, P. Saritha, N. Rambabu, V. Himabindu, and Y. Anjaneyulu, J. Hazard. Mater. 174, 151 (2010).
http://dx.doi.org/10.1016/j.jhazmat.2009.09.029
20.
20.R. E. Bird, R. L. Hulstrom, and L. J. Lewis, Sol. Energy 30, 563 (1983).
http://dx.doi.org/10.1016/0038-092X(83)90068-3
21.
21.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).
http://dx.doi.org/10.1126/science.1061051
22.
22.E. Kowalska, O. O. P. Mahaney, R. Abe, and B. Ohtani, Phys. Chem. Chem. Phys. 12, 2344 (2010).
http://dx.doi.org/10.1039/b917399d
http://aip.metastore.ingenta.com/content/aip/journal/bmf/4/4/10.1063/1.3491471
Loading
/content/aip/journal/bmf/4/4/10.1063/1.3491471
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/4/4/10.1063/1.3491471
2010-12-30
2015-08-31

Abstract

Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber enclosed by two -coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input/output. In experiment, the microreactor achieves 30% degradation of 3 ml methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface/volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/4/4/1.3491471.html;jsessionid=2f1e7djont1hc.x-aip-live-02?itemId=/content/aip/journal/bmf/4/4/10.1063/1.3491471&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optofluidic planar reactors for photocatalytic water treatment using solar energy
http://aip.metastore.ingenta.com/content/aip/journal/bmf/4/4/10.1063/1.3491471
10.1063/1.3491471
SEARCH_EXPAND_ITEM