Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/bmf/4/4/10.1063/1.3515523
1.
1.M. M. Mench, Fuel Cell Engines (Wiley, New York, 2008).
http://dx.doi.org/10.1002/9780470209769
2.
2.R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, Biosens. Bioelectron. 21, 2015 (2006).
3.
3.E. Katz and I. Willner, J. Am. Chem. Soc. 125, 6803 (2003).
http://dx.doi.org/10.1021/ja034008v
4.
4.P. Grunwald, Biocatalysis: Biochemical Fundamentals and Applications (Imperial College Press, London, 2009).
5.
5.F. Davis and S. P. J. Higson, Biosens. Bioelectron. 22, 1224 (2007).
http://dx.doi.org/10.1016/j.bios.2006.04.029
6.
6.H. Liu and B. E. Logan, Environ. Sci. Technol. 38, 4040 (2004).
http://dx.doi.org/10.1021/es0499344
7.
7.A. Bergel, D. Feron, and A. Mollica, Electrochem. Commun. 7, 900 (2005).
http://dx.doi.org/10.1016/j.elecom.2005.06.006
8.
8.C. M. Moore, S. D. Minteer, and R. S. Martin, Lab Chip 5, 218 (2005).
http://dx.doi.org/10.1039/b412719f
9.
9.W. Gellett, J. Schumacher, M. Kesmez, D. Le, and S. D. Minteer, J. Electrochem. Soc. 157, B557 (2010).
http://dx.doi.org/10.1149/1.3309728
10.
10.E. Kjeang, N. Djilali, and D. Sinton, J. Power Sources 186, 353 (2009).
http://dx.doi.org/10.1016/j.jpowsour.2008.10.011
11.
11.R. Ferrigno, A. D. Stroock, T. D. Clark, M. Mayer, and G. M. Whitesides, J. Am. Chem. Soc. 124, 12930 (2002).
http://dx.doi.org/10.1021/ja020812q
12.
12.S. D. Senturia, Microsystem Design (Kluwer, Dordrecht, 2001).
13.
13.J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, Electrophoresis 21, 27 (2000).
http://dx.doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
14.
14.T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, Chem. Commun. (Cambridge) 2005, 5062.
15.
15.H. Yamaguchi, M. Miyazaki, T. Honda, M. P. Briones-Nagata, K. Arima, and H. Maeda, Electrophoresis 30, 3257 (2009).
http://dx.doi.org/10.1002/elps.200900134
16.
16.M. S. Thomsen, P. Polt, and B. Nidetzky, Chem. Commun. (Cambridge) 2007, 2527.
17.
17.W. Laiwattanapaisal, J. Yakovleva, M. Bengtsson, T. Laurell, S. Wiyakrutta, V. Meevootisom, O. Chailapakul, and J. Emneus, Biomicrofluidics 3, 014104 (2009).
http://dx.doi.org/10.1063/1.3098319
18.
18.H. -Y. Wang, A. Bernarda, C. -Y. Huang, D. -J. Lee, and J. -S. Chang, Bioresour. Technol. 102, 235 (2011).
http://dx.doi.org/10.1016/j.biortech.2010.07.007
19.
19.M. Chiao, K. B. Lam, and L. W. Lin, J. Micromech. Microeng. 16, 2547 (2006).
http://dx.doi.org/10.1088/0960-1317/16/12/005
20.
20.C. P. B. Siu and M. Chiao, J. Microelectromech. Syst. 17, 1329 (2008).
http://dx.doi.org/10.1109/JMEMS.2008.2006816
21.
21.F. Qian, M. Baum, Q. Gu, and D. E. Morse, Lab Chip 9, 3076 (2009).
http://dx.doi.org/10.1039/b910586g
22.
22.E. Parra and L. Lin, Proceedings of MEMS, 2009, Vol. 22, p. 31.
23.
23.S. Cheng, H. Liu, and B. Logan, J. Am. Chem. Soc. 230, U1758 (2005).
24.
24.M. Togo, A. Takamura, T. Asai, H. Kaji, and M. Nishizawa, Electrochim. Acta 52, 4669 (2007).
http://dx.doi.org/10.1016/j.electacta.2007.01.067
25.
25.M. Togo, A. Takamura, T. Asai, H. Kaji, and M. Nishizawa, J. Power Sources 178, 53 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2007.12.052
26.
26.K. G. Lim and G. T. R. Palmore, Biosens. Bioelectron. 22, 941 (2007).
http://dx.doi.org/10.1016/j.bios.2006.04.019
27.
27.A. Zebda, J. Renaud, M. Cretin, F. Pichot, C. Innocent, R. Ferrigno, and S. Tingry, Electrochem. Commun. 11, 592 (2009).
http://dx.doi.org/10.1016/j.elecom.2008.12.036
28.
28.R. A. Sheldon, Biochem. Soc. Trans. 35, 1583 (2007).
http://dx.doi.org/10.1042/BST0351583
29.
29.P. He, G. Greenway, and H. J. Haswell, Microfluid. Nanofluid. 8, 565 (2010).
http://dx.doi.org/10.1007/s10404-009-0476-8
30.
30.J. Kim, H. F. Jia, and P. Wang, Biotechnol. Adv. 24, 296 (2006).
http://dx.doi.org/10.1016/j.biotechadv.2005.11.006
31.
31.A. Sharma, Y. Qiang, J. Antony, D. Meyer, P. Kornacki, and A. Paszczynski, IEEE Trans. Magn. 43, 2418 (2007).
http://dx.doi.org/10.1109/TMAG.2007.893849
32.
32.Y. B. Davis and H. F. Yarborough, Science 137, 615 (1962).
http://dx.doi.org/10.1126/science.137.3530.615
33.
33.E. Kjeang, B. Roesch, J. McKechnie, D. A. Harrington, N. Djilali, and D. Sinton, Microfluid. Nanofluid. 3, 403 (2007).
http://dx.doi.org/10.1007/s10404-006-0128-1
34.
34.E. Kjeang, D. Sinton, and D. A. Harrington, J. Power Sources 158, 1 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2005.07.092
35.
35.V. S. Mallela, V. Ilankumaran, and N. S. Rao, Ind. Pacing & Electrophy. 4, 201 (2004).
36.
36.K. Meena and T. K. Raja, World J. Microbiol. Biotechnol. 22, 651 (2006).
http://dx.doi.org/10.1007/s11274-005-9085-1
37.
37.N. Maluf, An Introduction to Microelectromechanical Systems Engineering (Artech House, Boston, 2000).
38.
38.M. Madou, Fundamentals of Microfabrication (CRC, Boca Raton, 2002).
39.
40.
40.B. E. Logan, B. Hamelers, R. A. Rozendal, U. Schrorder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, Environ. Sci. Technol. 40, 5181 (2006).
http://dx.doi.org/10.1021/es0605016
http://aip.metastore.ingenta.com/content/aip/journal/bmf/4/4/10.1063/1.3515523
Loading
/content/aip/journal/bmf/4/4/10.1063/1.3515523
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/4/4/10.1063/1.3515523
2010-11-10
2016-12-05

Abstract

This review article presents how microfluidictechnologies and biological materials are paired to assist in the development of low cost, green energy fuel cell systems. Miniaturized biological fuel cells, employing enzymes or microorganisms as biocatalysts in an environmentally benign configuration, can become an attractive candidate for small-scale power source applications such as biological sensors, implantable medical devices, and portable electronics. State-of-the-art biofuel cell technologies are reviewed with emphasis on microfabrication compatibility and microfluidicfuel cell designs. Integrated microfluidicbiofuel cell prototypes are examined with comparisons of their performance achievements and fabrication methods. The technical challenges for further developments and the potential research opportunities for practical cell designs are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/4/4/1.3515523.html;jsessionid=pSP96GjMPaT1BxeKVv_8E0Wo.x-aip-live-03?itemId=/content/aip/journal/bmf/4/4/10.1063/1.3515523&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=bmf.aip.org/4/4/10.1063/1.3515523&pageURL=http://scitation.aip.org/content/aip/journal/bmf/4/4/10.1063/1.3515523'
Right1,Right2,Right3,