1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Swimming direction reversal of flagella through ciliary motion of mastigonemesa)
a)Paper submitted as part of the 2nd European Conference on Microfluidics (Guest Editors: S. Colin and G.L. Morini). The Conference was held in Toulouse, France—December 8–10, 2010.
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/5/3/10.1063/1.3608240
1.
1. G. Taylor, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 209, 447 (1951).
http://dx.doi.org/10.1098/rspa.1951.0218
2.
2. J. Gray and G. J. Hancock, J. Exp. Biol. 32, 802 (1955).
3.
3. E. M. Purcell, Am. J. Phys. 45, 3 (1977).
http://dx.doi.org/10.1119/1.10903
4.
4. L. E. Becker, S. A. Koehler, and H. A. Stone, J. Fluid Mech. 490, 15 (2003).
http://dx.doi.org/10.1017/S0022112003005184
5.
5. R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Nature 437, 862 (2005).
http://dx.doi.org/10.1038/nature04090
6.
6. E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 09660136 (2009).
http://dx.doi.org/10.1088/0034-4885/72/9/096601
7.
7. C. Brennen and H. Winet, Annu. Rev. Fluid Mech. 9, 339 (1977).
http://dx.doi.org/10.1146/annurev.fl.09.010177.002011
8.
8. P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagues, J. Phys. Chem. B 112, 16525 (2008).
http://dx.doi.org/10.1021/jp808354n
9.
9. A. Ghosh and P. Fischer, Nano Lett. 9, 2243 (2009).
http://dx.doi.org/10.1021/nl900186w
10.
10. J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. Dong, I. K. Kaliakatsos, and B. J. Nelson, Int. J. Rob. Res. 28, 1434 (2009).
http://dx.doi.org/10.1177/0278364909341658
11.
11. S. N. Khaderi, M. G. H. M. Baltussen, P. D. Anderson, D. Ioan, J. M. J. den Toonder, and P. R. Onck, Phys. Rev. E 79, 046304 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.046304
12.
12. S. N. Khaderi, C. B. Craus, J. Hussong, N. Schorr, J. Belardi, J. Westerweel, O. Prucker, J. Ruhe, J. M. J. den Toonder, and P. R. Onck, Lab Chip 11, 2002 (2011).
http://dx.doi.org/10.1039/c0lc00411a
13.
13. J. den Toonder, F. Bos, D. Broer, L. Filippini, M. Gillies, J. de Goede, T. Mol, M. Reijme, W. Talen, H. Wilderbeek, V. Khatavkar, and P. Anderson, Lab Chip 8, 533 (2008).
http://dx.doi.org/10.1039/b717681c
14.
14. M. E. J. Holwill and M. A. Sleigh, J. Exp. Biol. 47, 267 (1967).
15.
15. D. M. Cahill, M. Cope, and A. R. Hardham, Protoplasma 194, 18 (1996).
http://dx.doi.org/10.1007/BF01273164
16.
16. C. Brennen, J. Mechanochem. Cell Motil. 3, 207 (1975).
17.
17. S. Kobayashi, R. Watanabe, T. Oiwa, and H. Morikawa, J. Biomech. Sci. Eng. 4, 11 (2009).
http://dx.doi.org/10.1299/jbse.4.11
18.
18. L. J. Fauci, Am. Zool. 36, 599 (1996).
19.
19. M. A. Sleigh, Protoplasma 164, 45 (1991).
http://dx.doi.org/10.1007/BF01320814
20.
20. D. M. Woolley, Biol. Rev. 85, 453 (2010).
22.
22. J. J. L. Higdon, J. Fluid Mech. 90, 685 (1979).
http://dx.doi.org/10.1017/S0022112079002482
23.
23. C. Pozrikidis, A Practical Guide to Boundary-Element Methods with the Software Library BEMLIB (Chapman & Hall/CRC, Boca Raton, FL, 2002).
24.
24. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Springer, New York, 1991).
25.
25. S. N. Khaderi and P. R. Onck, “Implicitly-coupled finite element/boundary element method for the fluid-structure interaction of magnetic artificial cilia” (unpublished).
26.
26. J. Lighthill, SIAM Rev. 18, 161 (1976).
http://dx.doi.org/10.1137/1018040
27.
27. R. D. Dresdner, D. F. Katz, and S. A. Berger, J. Fluid Mech. 97, 591 (1980).
http://dx.doi.org/10.1017/S0022112080002716
28.
28.See supplementary material at http://dx.doi.org/10.1063/1.3608240 for an animation of the swept-area by flexible and rigid mastigonemes. [Supplementary Material]
29.
29. M. A. Sleigh, Metachronism of Cilia of Metazoa, Cilia and Flagella (Academic, London 1974).
30.
30. S. N. Khaderi, M. G. H. M. Baltussen, P. D. Anderson, J. M. J. den Toonder, and P. R. Onck, Phys. Rev. E 82, 027302 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.027302
31.
31. R. Annabattula, W. Huck, and P. Onck, J. Mech. Phys. Solids 58, 447 (2010).
http://dx.doi.org/10.1016/j.jmps.2010.02.004
32.
32. R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis (John Wiley & Sons, New York, 2002).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/5/3/10.1063/1.3608240
Loading
/content/aip/journal/bmf/5/3/10.1063/1.3608240
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/5/3/10.1063/1.3608240
2011-07-29
2014-08-22

Abstract

Bio-inspired designs can provide an answer to engineering problems such as swimming strategies at the micron or nano-scale. Scientists are now designing artificial micro-swimmers that can mimic flagella-powered swimming of micro-organisms. In an application such as lab-on-a-chip in which micro-object manipulation in small flow geometries could be achieved by micro-swimmers, control of the swimming direction becomes an important aspect for retrieval and control of the micro-swimmer. A bio-inspired approach for swimming direction reversal (a flagellum bearing mastigonemes) can be used to design such a system and is being explored in the present work. We analyze the system using a computational framework in which the equations of solid mechanics and fluid dynamics are solved simultaneously. The fluid dynamics of Stokes flow is represented by a 2D Stokeslets approach while the solid mechanics behavior is realized using Euler-Bernoulli beam elements. The working principle of a flagellum bearing mastigonemes can be broken up into two parts: (1) the contribution of the base flagellum and (2) the contribution of mastigonemes, which act like cilia. These contributions are counteractive, and the net motion (velocity and direction) is a superposition of the two. In the present work, we also perform a dimensional analysis to understand the underlying physics associated with the system parameters such as the height of the mastigonemes, the number of mastigonemes, the flagellar wave length and amplitude, the flagellum length, and mastigonemes rigidity. Our results provide fundamental physical insight on the swimming of a flagellum with mastigonemes, and it provides guidelines for the design of artificial flagellar systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/5/3/1.3608240.html;jsessionid=5kl9bn2v02gf.x-aip-live-03?itemId=/content/aip/journal/bmf/5/3/10.1063/1.3608240&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf

Most read this month

Article
content/aip/journal/bmf
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Swimming direction reversal of flagella through ciliary motion of mastigonemesa)
http://aip.metastore.ingenta.com/content/aip/journal/bmf/5/3/10.1063/1.3608240
10.1063/1.3608240
SEARCH_EXPAND_ITEM