1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/1/10.1063/1.3671399
1.
1. E. H. Du Bois-Reymond, Untersuchungen Über Thierische Elektricität (G. Reimer, Berlin, 1848).
2.
2. C. D. McCaig, A. M. Rajnicek, B. Song, and M. Zhao, Physiol. Rev. 85(3), 943 (2005).
http://dx.doi.org/10.1152/physrev.00020.2004
3.
3. G. Tai, B. Reid, L. Cao, and M. Zhao, Methods Mol. Biol. 571, 77 (2009).
http://dx.doi.org/10.1007/978-1-60761-198-1_5
4.
4. R. B. Borgens, A. R. Blight, D. J. Murphy, and L. Stewart, J. Comp. Neurol. 250(2), 168 (1986).
http://dx.doi.org/10.1002/cne.v250:2
5.
5. M. Levin, Semin. Cell Dev. Biol. 20(5), 543 (2009).
http://dx.doi.org/10.1016/j.semcdb.2009.04.013
6.
6. R. Nuccitelli, Radiat. Prot. Dosim. 106(4), 375 (2003).
7.
7. F. Lin, F. Baldessari, C. C. Gyenge, T. Sato, R. D. Chambers, J. G. Santiago, and E. C. Butcher, J. Immunol. 181(4), 2465 (2008).
8.
8. J. Li, S. Nandagopal, D. Wu, S. F. Romanuik, K. Paul, D. J. Thomson, and F. Lin, Lab Chip 11(7), 1298 (2011).
http://dx.doi.org/10.1039/c0lc00371a
9.
9. C. W. Huang, J. Y. Cheng, M. H. Yen, and T. H. Young, Biosens. Bioelectron. 24(12), 3510 (2009).
http://dx.doi.org/10.1016/j.bios.2009.05.001
10.
10. X. L. Yan, J. Han, Z. P. Zhang, J. Wang, Q. S. Cheng, K. X. Gao, Y. F. Ni, and Y. J. Wang, Bioelectromagnetics (N.Y.) 30(1), 29 (2009).
http://dx.doi.org/10.1002/bem.20436
11.
11. J. Zhang, M. Calafiore, Q. Zeng, X. Zhang, Y. Huang, R. A. Li, W. Deng, and M. Zhao, Stem Cell Rev. 7(4), 987 (2011).
http://dx.doi.org/10.1007/s12015-011-9247-5
12.
12. B. Rapp, A. Deboisfleurychevance, and H. Gruler, Eur. Biophys. J. 16(5), 313 (1988).
http://dx.doi.org/10.1007/BF00254068
13.
13. P. C. T. Chang, G. L. Sulik, H. K. Soong, and W. C. Parkinson, J. Formos Med. Assoc. 95(8), 623 (1996).
14.
14. M. Zhao, H. Bai, E. Wang, J. V. Forrester, and C. D. McCaig, J. Cell Sci. 117(3), 397 (2004).
http://dx.doi.org/10.1242/jcs.00868
15.
15. M. S. Cooper and R. E. Keller, Proc. Natl. Acad. Sci. U.S.A. 81(1), 160 (1984).
http://dx.doi.org/10.1073/pnas.81.1.160
16.
16. D. M. Sheridan, R. R. Isseroff, and R. Nuccitelli, J. Invest. Dermatol. 106(4), 642 (1996).
http://dx.doi.org/10.1111/1523-1747.ep12345456
17.
17. E. K. Onuma and S. W. Hui, Cell Calcium 6(3), 281 (1985).
http://dx.doi.org/10.1016/0143-4160(85)90012-0
18.
18. M. B. A. Djamgoz, M. Mycielska, Z. Madeja, S. P. Fraser, and W. Korohoda, J. Cell Sci. 114(Pt 14), 2697 (2001).
19.
19. J. Pu, C. D. McCaig, L. Cao, Z. Zhao, J. E. Segall, and M. Zhao, J. Cell Sci. 120(Pt 19), 3395 (2007).
http://dx.doi.org/10.1242/jcs.002774
20.
20. B. Song, Y. Gu, J. Pu, B. Reid, Z. Q. Zhao, and M. Zhao, Nat. Protoc. 2(6), 1479 (2007).
http://dx.doi.org/10.1038/nprot.2007.205
21.
21. F. Boukhechba, T. Balaguer, J. F. Michiels, K. Ackermann, D. Quincey, J. M. Bouler, W. Pyerin, G. F. Carle, and N. Rochet, J. Bone Miner. Res. 24(11), 1927 (2009).
http://dx.doi.org/10.1359/jbmr.090517
22.
22. I. Kim, H. Park, Y. Shin, and M. Kim, J. Tissue Eng. Regener. Med. 6(4–11), 924 (2009).
23.
23. H. Liu and K. Roy, Tissue Eng. 11(1–2), 319 (2005).
http://dx.doi.org/10.1089/ten.2005.11.319
24.
24. T. Ma, Y. Li, S. T. Yang, and D. A. Kniss, Biotechnol. Bioeng. 70(6), 606 (2000).
http://dx.doi.org/10.1002/1097-0290(20001220)70:6<>1.0.CO;2-5
25.
25. X. F. Tian, B. C. Heng, Z. Ge, K. Lu, A. J. Rufaihah, V. T. W. Fan, J. F. Yeo, and T. Cao, Scand. J. Clin. Lab. Invest. 68(1), 58 (2008).
http://dx.doi.org/10.1080/00365510701466416
26.
26. T. Nakamura, Y. Kato, H. Fujii, T. Horiuchi, Y. Chiba, and K. Tanaka, Int. J. Mol. Med. 12(5), 693 (2003).
27.
27. J. Yin, Q. Meng, G. L. Zhang, and Y. H. Sun, Chem. Biol. Interact. 180(3), 368 (2009).
http://dx.doi.org/10.1016/j.cbi.2009.04.004
28.
28. D. Loessner, K. S. Stok, M. P. Lutolf, D. W. Hutmacher, J. A. Clements, and S. C. Rizzi, Biomaterials 31(32), 8494 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.07.064
29.
29. Q. Meng, Expert Opin. Drug Metab. Toxicol. 6(6), 733 (2010).
http://dx.doi.org/10.1517/17425251003674356
30.
30. J. L. Horning, S. K. Sahoo, S. Vijayaraghavalu, S. Dimitrijevic, J. K. Vasir, T. K. Jain, A. K. Panda, and V. Labhasetwar, Mol. Pharmacol. 5(5), 849 (2008).
http://dx.doi.org/10.1021/mp800047v
31.
31. T. K. Kim, B. Sharma, C. G. Williams, M. A. Ruffner, A. Malik, E. G. McFarland, and J. H. Elisseeff, Osteoarthritis Cartilage 11(9), 653 (2003).
http://dx.doi.org/10.1016/S1063-4584(03)00120-1
32.
32. G. N. Li, L. L. Livi, C. M. Gourd, E. S. Deweerd, and D. Hoffman-Kim, Tissue Eng. 13(5), 1035 (2007).
http://dx.doi.org/10.1089/ten.2006.0251
33.
33. S. Li, J. Lao, B. P. Chen, Y. S. Li, Y. Zhao, J. Chu, K. D. Chen, T. C. Tsou, K. Peck, and S. Chien, FASEB J. 17(1), 97 (2003).
http://dx.doi.org/10.1096/fj.02-0759com
34.
34. S. R. Peyton, C. B. Raub, V. P. Keschrumrus, and A. J. Putnam, Biomaterials 27(28), 4881 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2006.05.012
35.
35. Y. B. Xie, S. T. Yang, and D. A. Kniss, Tissue Eng. 7(5), 585 (2001).
http://dx.doi.org/10.1089/107632701753213200
36.
36. M. Bokhari, R. J. Carnachan, N. R. Cameron, and S. A. Przyborski, J. Anat. 211(4), 567 (2007).
http://dx.doi.org/10.1111/j.1469-7580.2007.00778.x
37.
37. H. J. Boxberger and T. F. Meyer, Biol. Cell 82(2–3), 109 (1994).
http://dx.doi.org/10.1016/S0248-4900(94)80013-8
38.
38. Z. Z. Wu, Y. P. Zhao, and W. S. Kisaalita, Biosens. Bioelectron. 22(5), 685 (2006).
http://dx.doi.org/10.1016/j.bios.2006.02.003
39.
39. T. Tsunoda, B. Furusato, Y. Takashima, S. Ravulapalli, A. Dobi, S. Srivastava, D. G. McLeod, I. A. Sesterhenn, D. K. Ornstein, and S. Shirasawa, Prostate 69(13), 1398 (2009).
http://dx.doi.org/10.1002/pros.20988
40.
40. S. I. Fraley, Y. F. Feng, R. Krishnamurthy, D. H. Kim, A. Celedon, G. D. Longmore, and D. Wirtz, Nat. Cell Biol. 12(6), 598 (2010).
http://dx.doi.org/10.1038/ncb2062
41.
41. H. Peretz, A. E. Talpalar, R. Vago, and D. Baranes, Tissue Eng. 13(3), 461 (2007).
http://dx.doi.org/10.1089/ten.2005.0522
42.
42. S. Scaglione, A. Braccini, D. Wendt, C. Jaquiery, F. Beltrame, R. Quarto, and I. Martin, Biotechnol. Bioeng. 93(1), 181 (2006).
http://dx.doi.org/10.1002/bit.v93:1
43.
43. R. M. Quiros, M. Valianou, Y. Kwon, K. M. Brown, A. K. Godwin, and E. Cukierman, Gynecol. Oncol. 110(1), 99 (2008).
http://dx.doi.org/10.1016/j.ygyno.2008.03.006
44.
44. B. C. Mehta, D. W. Holman, D. M. Grzybowski, and J. J. Chalmers, Tissue Eng. 13(6), 1269 (2007).
http://dx.doi.org/10.1089/ten.2006.0233
45.
45. C. C. Ceresa, A. J. Knox, and S. R. Johnson, Am. J. Physiol. Lung Cell. Mol. Physiol. 296(6), L1059 (2009).
http://dx.doi.org/10.1152/ajplung.90445.2008
46.
46. T. Luhmann, P. Hanseler, B. Grant, and H. Hall, Biomaterials 30(27), 4503 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.05.041
47.
47. I. Grabowska, A. Szeliga, J. Moraczewski, I. Czaplicka, and E. Brzoska, Cell Biol. Int. 35(2), 125 (2010).
http://dx.doi.org/10.1042/CBI20090335
48.
48. C. Chen, K. Chen, and S. T. Yang, Biotechnol. Prog. 19(5), 1574 (2003).
http://dx.doi.org/10.1021/bp034024w
49.
49. V. Chopra, T. V. Dinh, and E. V. Hannigan, in vitro Cell. Dev. Biol.: Anim. 33(6), 432 (1997).
http://dx.doi.org/10.1007/s11626-997-0061-y
50.
50. T. Okamoto, M. Takagi, T. Soma, H. Ogawa, M. Kawakami, M. Mukubo, K. Kubo, R. Sato, K. Toma, and T. Yoshida, Int. J. Artif. Organs 7(4), 194 (2004).
http://dx.doi.org/10.1007/s10047-004-0272-x
51.
51. Y. Torisawa, H. Shiku, T. Yasukawa, M. Nishizawa, and T. Matsue, Biomaterials 26(14), 2165 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.05.028
52.
52. A. Desai, W. S. Kisaalita, C. Keith, and Z. Z. Wu, Biosens. Bioelectron. 21(8), 1483 (2006).
http://dx.doi.org/10.1016/j.bios.2005.07.005
53.
53. J. R. Merwin, J. M. Anderson, O. Kocher, C. M. Van Itallie, and J. A. Madri, J. Cell Physiol. 142(1), 117 (1990).
http://dx.doi.org/10.1002/jcp.v142:1
54.
54. K. Storch, I. Eke, K. Borgmann, M. Krause, C. Richter, K. Becker, E. Schrock, and N. Cordes, Cancer Res. 70(10), 3925 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-09-3848
55.
55. C. S. Ki, S. Y. Park, H. J. Kim, H. M. Jung, K. M. Woo, J. W. Lee, and Y. H. Park, Biotechnol. Lett. 30(3), 405 (2008).
http://dx.doi.org/10.1007/s10529-007-9581-5
56.
56. C. L. Li, T. Tian, K. J. Nan, N. Zhao, Y. H. Guo, J. Cui, J. Wang, and W. G. Zhang, Oncol. Rep. 20(6), 1465 (2008).
http://dx.doi.org/10.3892/or_00000167
57.
57. J. Luo and S. T. Yang, Biotechnol. Prog. 20(1), 306 (2004).
http://dx.doi.org/10.1021/bp034181v
58.
58. R. B. Dickinson and R. T. Tranquillo, AIChE J. 39(12), 1995 (1993).
http://dx.doi.org/10.1002/aic.v39:12
59.
59. M. Ehrbar, A. Sala, P. Lienemann, A. Ranga, K. Mosiewicz, A. Bittermann, S. C. Rizzi, F. E. Weber, and M. P. Lutolf, Biophys. J. 100(2), 284 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.11.082
60.
60. L. A. Ma, C. C. Zhou, B. Y. Lin, and W. Li, Biomed. Microdevices 12(4), 753 (2010).
http://dx.doi.org/10.1007/s10544-010-9429-y
61.
61. B. B. Mandal and S. C. Kundu, Biomaterials 30(15), 2956 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.02.006
62.
62. C. F. Tu, Q. Cai, J. Yang, Y. Q. Wan, J. Z. Bei, and S. Wang, Polym. Adv. Technol. 14(8), 565 (2003).
http://dx.doi.org/10.1002/pat.v14:8
63.
63. Y. X. Huang, J. Ren, C. Chen, T. B. Ren and X. Y. Zhou, J. Biomater. Appl. 22(5), 409 (2008).
http://dx.doi.org/10.1177/0885328207077632
64.
64. A. K. Ekaputra, G. D. Prestwich, S. M. Cool, and D. W. Hutmacher, Biomacromolecules 9(8), 2097 (2008).
http://dx.doi.org/10.1021/bm800565u
65.
65. D. M. Xie, H. M. Huang, K. Blackwood, and S. MacNeil, Biomed Mater 5, 065016 (2010).
http://dx.doi.org/10.1088/1748-6041/5/6/065016
66.
66. M. Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials 27(13), 2705 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.11.037
67.
67. Y. H. Gong, Z. W. Ma, Q. L. Zhou, J. Li, C. Y. Gao, and J. C. Shen, J. Biomater. Sci., Polym. Ed. 19(2), 207 (2008).
http://dx.doi.org/10.1163/156856208783432453
68.
68. J. G. Fernandez and A. Khademhosseini, Adv Mater 22(23), 2538 (2010).
http://dx.doi.org/10.1002/adma.200903893
69.
69. I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, Biomaterials 23(4), 1169 (2002).
http://dx.doi.org/10.1016/S0142-9612(01)00232-0
70.
70. K. G. Marra, J. W. Szem, P. N. Kumta, P. A. DiMilla, and L. E. Weiss, J. Biomed. Mater. Res. 47(3), 324 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4636(19991205)47:3<>1.0.CO;2-5
71.
71. W. L. Wang, C. M. Cheah, J. Y. H. Fuh, and L. Lu, Mater. Des. 17(4), 205 (1996).
http://dx.doi.org/10.1016/S0261-3069(97)00008-3
72.
72. J. T. Rimell and P. M. Marquis, J. Biomed. Mater. Res. 53(4), 414 (2000).
http://dx.doi.org/10.1002/1097-4636(2000)53:4<>1.0.CO;2-F
73.
73. R. A. Giordano, B. M. Wu, S. W. Borland, L. G. Cima, E. M. Sachs, and M. J. Cima, J. Biomat. Sci., Polym. Ed. 8(1), 63 (1996).
http://dx.doi.org/10.1163/156856297X00588
74.
74. K. Y. Chung, N. C. Mishra, C. C. Wang, F. H. Lin, and K. H. Lin, Biomicrofluidics 3, 022403 (2009).
http://dx.doi.org/10.1063/1.3122665
75.
75. J.-Y. Lin, W.-J. Lin, W.-H. Hong, H.-H. Ning, W.-C. Hung, S. H. Nowotarski, S. M. Gouveia, I. Cristo, and K.-H. Lin, Soft Matter 7, 10010 (2011).
http://dx.doi.org/10.1039/c1sm05371j
76.
76. X. F. Li and J. Kolega, J. Vasc. Res. 39(5), 391 (2002).
http://dx.doi.org/10.1159/000064517
77.
77. J. Y. Shih, S. C. Yang, T. M. Hong, A. Yuan, J. J. W. Chen, C. J. Yu, Y. L. Chang, Y. C. Lee, K. Peck, C. W. Wu, and P. C. Yang, J. Natl. Cancer Inst. 93(18), 1392 (2001).
http://dx.doi.org/10.1093/jnci/93.18.1392
78.
78. J. J. W. Chen, K. Peck, T. M. Hong, S. C. Yang, Y. P. Sher, J. Y. Shih, R. Wu, J. L. Cheng, S. R. Roffler, C. W. Wu, and P. C. Yang, Cancer Res. 61(13), 5223 (2001).
79.
79. Y. W. Chu, P. C. Yang, S. C. Yang, Y. C. Shyu, M. J. C. Hendrix, R. Wu, and C. W. Wu, Am. J. Respir. Cell Mol. Biol. 17(3), 353 (1997).
80.
80. M. R. Buckley, J. P. Gleghorn, L. J. Bonassar, and I. Cohen, J. Biomech. 41, 2430 (2008).
http://dx.doi.org/10.1016/j.jbiomech.2008.05.021
81.
81. J. D. Mih, D. J. Tschumperlin, Proc. Am. Thorac. Soc. 5, 2 (2008).
82.
82. C.-W. Huang, H.-Y. Chen, M.-H. Yen, J. J. W. Chen, T.-H. Young, and J.-Y. Cheng, PLoS ONE 6(10), e25928 (2011).
http://dx.doi.org/10.1371/journal.pone.0025928.g001
83.
83. D. E. Discher, P. Janmey, and Y. L. Wang, Science 310(5751), 1139 (2005).
http://dx.doi.org/10.1126/science.1116995
84.
84. S. R. Peyton, Z. I. Kalcioglu, J. C. Cohen, A. P. Runkle, K. J. Van Vliet, D. A. Lauffenburger, and L. G. Griffith, Biotechnol. Bioeng. 108(5), 1181 (2011).
http://dx.doi.org/10.1002/bit.23027
85.
85. T. Yeung, P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Y. Ming, V. Weaver, and P. A. Janmey, Cell Motil. Cytoskeleton 60(1), 24 (2005).
http://dx.doi.org/10.1002/cm.v60:1
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/1/10.1063/1.3671399
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) PDMS-based micro-channel device with solution and gas has been pumped through the inlets and bubbles have been collected from the outlet. (b) Monodisperse bubbles with a uniform size were formed and constantly flowed out.

Image of FIG. 2.

Click to view

FIG. 2.

Design of the fluidic chamber assembly.

Image of FIG. 3.

Click to view

FIG. 3.

Side-view of the electrotaxis system.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Picture of a 3D scaffold. (b) Bright-field confocal image of a 3D scaffold. Only one fixed layer is shown. Scale bar = 50 μm. (c) Fluorescent confocal image of a 3D scaffold. Only one fixed layer is shown. Scale bar = 50 μm. (d) Re-constructed 3D top-view image of a 3D scaffold. (e) Re-constructed 3D side-view image of a 3D scaffold. (f) Re-constructed 3D image of CL1-0 cells (stained with CellVue®) inside a 3D scaffold (enhanced online) . [URL: http://dx.doi.org/10.1063/1.3671399.1]10.1063/1.3671399.1

Image of FIG. 5.

Click to view

FIG. 5.

Pulmonary alveoli. An alveolus has a form of a hollow cavity, and in some alveolar walls, there are pores between alveoli called Pores of Kohn (reprinted from The President’s Council on Bioethics, Washington, D.C., January 2009, http://bioethics.georgetown.edu/pcbe/).

Image of FIG. 6.

Click to view

FIG. 6.

Ellipticity of (a) CL1-0, (b) CL1-5, and (c) A549 cells after 2 h and 2 days cultured in 2D and 3D environments. (2D: 2D bare substrate, 2DG: 2D-gelatin coated substrate, 3DG: 3D-gelatin made scaffold.) For each cell line, the total number of cells selected for analysis is 30.

Image of FIG. 7.

Click to view

FIG. 7.

A549 cells inside a 3D scaffold under an applied EF of 338 mV/mm at (a) t = 0 min and (b) t = 60 min. Clearly some cells (Nos. 1, 2, and 3 in blue circles) migrated through interconnected pores (enhanced online) . [URL: http://dx.doi.org/10.1063/1.3671399.2]10.1063/1.3671399.2

Image of FIG. 8.

Click to view

FIG. 8.

Polar plots of cell migration after 2 h with and without the applied EF. Left column: CL1-0, CL1-5, and A549 without the applied EF. Right column: CL1-0, CL1-5, and A549 with the applied EF of 338 mV/mm. In the beginning, cells are set at the origin. All plots have the same scale and EF direction (from the right to the left).

Tables

Generic image for table

Click to view

Table I.

Similarities between 3D porous scaffolds and in vivo pulmonary alveoli.

Generic image for table

Click to view

Table II.

Migration directedness and speed of 3 different cells with and without the applied EF in 3D scaffolds. n is the total number of cells selected for analysis.

Generic image for table

Click to view

Table III.

Electrotaxis of lung cancer cell lines CL1-0, CL1-5, and A549 in 2D and 3D environments. Stimulation time = 2 h (2D: 2D bare substrate, 2DG: 2D-gelatin coated substrate, 3D: 3D-gelatin made scaffold).

video/mp4,video/x-flv,video/flv,audio.mp3,audio.mpeg

Multimedia

The following multimedia file is available:
The following multimedia file is available:
Loading

Article metrics loading...

/content/aip/journal/bmf/6/1/10.1063/1.3671399
2012-01-04
2014-04-17

Abstract

In this paper, we report a new method to incorporate 3D scaffold with electrotaxis measurement in the microfluidic device. The electrotactic response of lungcancercells in the 3D foam scaffolds which resemble the in vivo pulmonary alveoli may give more insight on cellular behaviors in vivo. The 3D scaffold consists of ordered arrays of uniform spherical pores in gelatin. We found that cell morphology in the 3D scaffold was different from that in 2D substrate. Next, we applied a direct current electric field (EF) of 338 mV/mm through the scaffold for the study of cells’ migration within. We measured the migration directedness and speed of different lungcancercell lines, CL1-0, CL1-5, and A549, and compared with those examined in 2D gelatin-coated and bare substrates. The migration direction is the same for all conditions but there are clear differences in cell morphology, directedness, and migration speed under EF. Our results demonstrate cell migration under EF is different in 2D and 3D environments and possibly due to different cell morphology and/or substrate stiffness.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/1/1.3671399.html;jsessionid=5idgcp9galthe.x-aip-live-02?itemId=/content/aip/journal/bmf/6/1/10.1063/1.3671399&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrotaxis of lung cancer cells in ordered three-dimensional scaffolds
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/1/10.1063/1.3671399
10.1063/1.3671399
SEARCH_EXPAND_ITEM