1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
A perspective on paper-based microfluidics: Current status and future trends
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/1/10.1063/1.3687398
1.
1. R. H. Müller and D. L. Clegg, Anal. Chem. 21(9), 1123 (1949).
http://dx.doi.org/10.1021/ac60033a032
2.
2. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Angew. Chem., Int. Ed. 46(8), 1318 (2007).
http://dx.doi.org/10.1002/(ISSN)1521-3773
3.
3. A. W. Martinez, S. T. Phillips, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 105(50), 19606 (2008).
http://dx.doi.org/10.1073/pnas.0810903105
4.
4. S. Klasner, A. Price, K. Hoeman, R. Wilson, K. Bell, and C. Culbertson, Anal. Bioanal. Chem. 397(5), 1821 (2010).
http://dx.doi.org/10.1007/s00216-010-3718-4
5.
5. D. A. Bruzewicz, M. Reches, and G. M. Whitesides, Anal. Chem. 80(9), 3387 (2008).
http://dx.doi.org/10.1021/ac702605a
6.
6. K. Abe, K. Suzuki, and D. Citterio, Anal. Chem. 80(18), 6928 (2008).
http://dx.doi.org/10.1021/ac800604v
7.
7. K. Abe, K. Kotera, K. Suzuki, and D. Citterio, Anal. Bioanal. Chem. 398(2), 885 (2010).
http://dx.doi.org/10.1007/s00216-010-4011-2
8.
8. X. Li, J. Tian, T. Nguyen, and W. Shen, Anal. Chem. 80(23), 9131 (2008).
http://dx.doi.org/10.1021/ac801729t
9.
9. X. Li, J. Tian, and W. Shen, Cellulose 17(3), 649 (2010).
http://dx.doi.org/10.1007/s10570-010-9401-2
10.
10. E. M. Fenton, M. R. Mascarenas, G. P. López, and S. S. Sibbett, ACS Appl. Mater. Interfaces 1(1), 124 (2008).
http://dx.doi.org/10.1021/am800043z
11.
11. W. Wang, W.-Y. Wu, and J.-J. Zhu, J. Chromatogr. A 1217(24), 3896 (2010).
http://dx.doi.org/10.1016/j.chroma.2010.04.017
12.
12. Y. Lu, W. Shi, L. Jiang, J. Qin, and B. Lin, Electrophoresis 30(9), 1497 (2009).
http://dx.doi.org/10.1002/elps.v30:9
13.
13. E. Carrilho, A. W. Martinez, and G. M. Whitesides, Anal. Chem. 81(16), 7091 (2009).
http://dx.doi.org/10.1021/ac901071p
14.
14. V. Leung, A. -A. M.M. Shehata, C. D. M. Filipe, and R. Pelton, Colloids Surf., A 364(1–3), 16 (2010).
http://dx.doi.org/10.1016/j.colsurfa.2010.04.008
15.
15. X. Li, J. Tian, G. Garnier, and W. Shen, Colloids Surf., B 76(2), 564 (2010).
http://dx.doi.org/10.1016/j.colsurfb.2009.12.023
16.
16. J. L. Delaney, C. F. Hogan, J. Tian, and W. Shen, Anal. Chem. 83(4), 1300 (2011).
http://dx.doi.org/10.1021/ac102392t
17.
17. J. Olkkonen, K. Lehtinen, and T. Erho, Anal. Chem. 82(24), 10246 (2010).
http://dx.doi.org/10.1021/ac1027066
18.
18. W. Dungchai, O. Chailapakul, and C. S. Henry, Analyst (Amsterdam) 136(1), 77 (2011).
19.
19. G. Chitnis, Z. Ding, C.-L. Chang, C. A. Savran, and B. Ziaie, Lab Chip 11(6), 1161 (2011).
http://dx.doi.org/10.1039/c0lc00512f
20.
20. A. W. Martinez, S. T. Phillips, B. J. Wiley, M. Gupta, and G. M. Whitesides, Lab Chip 8(12), 2146 (2008).
http://dx.doi.org/10.1039/b811135a
21.
21. W. Shen, Y. Filonanko, Y. Truong, I. H. Parker, N. Brack, P. Pigram, and J. Liesegang, Colloids Surf., A 173(1–3), 117 (2000).
http://dx.doi.org/10.1016/S0927-7757(00)00454-4
22.
22. X. Li, J. Tian, and W. Shen, Anal. Bioanal. Chem. 396(1), 495 (2010).
http://dx.doi.org/10.1007/s00216-009-3195-9
23.
23. A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi, and G. M. Whitesides, Anal. Chem. 80(10), 3699 (2008).
http://dx.doi.org/10.1021/ac800112r
24.
24. W. Dungchai, O. Chailapakul, and C. S. Henry, Anal. Chim. Acta 674(2), 227 (2010).
http://dx.doi.org/10.1016/j.aca.2010.06.019
25.
25. E. Carrilho, S. T. Phillips, S. J. Vella, A. W. Martinez, and G. M. Whitesides, Anal. Chem. 81(15), 5990 (2009).
http://dx.doi.org/10.1021/ac900847g
26.
26. H. Yagoda, Ind. Eng. Chem. Anal. Ed. 9(2), 79 (1937).
http://dx.doi.org/10.1021/ac50106a012
27.
27. C.-M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, Angew. Chem. Int. Ed. 49(28), 4771 (2010).
28.
28. Y. Liu, Y. Sun, K. Sun, L. Song, and X. Jiang, J. Mater. Chem. 20(35), 7305 (2010).
http://dx.doi.org/10.1039/c0jm00576b
29.
29. R. F. Carvalhal, E. Carrilho, and L. T. Kubota, Bioanalysis 2(10), 1663 (2010).
http://dx.doi.org/10.4155/bio.10.138
30.
30. Z. Nie, F. Deiss, X. Liu, O. Akbulut, and G. M. Whitesides, Lab Chip 10(22), 3163 (2010).
http://dx.doi.org/10.1039/c0lc00237b
31.
31. A. W. Martinez, S. T. Phillips, Z. Nie, C.-M. Cheng, E. Carrilho, B. J. Wiley, and G. M. Whitesides, Lab Chip 10(19), 2499 (2010).
http://dx.doi.org/10.1039/c0lc00021c
32.
32. A. K. Ellerbee, S. T. Phillips, A. C. Siegel, K. A. Mirica, A. W. Martinez, P. Striehl, N. Jain, M. Prentiss, and G. M. Whitesides, Anal. Chem. 81(20), 8447 (2009).
http://dx.doi.org/10.1021/ac901307q
33.
33. H. Noh and S. T. Phillips, Anal. Chem. 82(19), 8071 (2010).
http://dx.doi.org/10.1021/ac1005537
34.
34. T. Songjaroen, W. Dungchai, O. Chailapakul, and W. Laiwattanapaisal, Talanta 85(5), 2587 (2011).
http://dx.doi.org/10.1016/j.talanta.2011.08.024
35.
35. M. S. Khan, G. Thouas, W. Shen, G. Whyte, and G. Garnier, Anal. Chem. 82(10), 4158 (2010).
http://dx.doi.org/10.1021/ac100341n
36.
36. C.-Z. Li, K. Vandenberg, S. Prabhulkar, X. Zhu, L. Schneper, K. Methee, C. J. Rosser, and E. Almeide, Biosens. Bioelectron. 26(11), 4342 (2011).
http://dx.doi.org/10.1016/j.bios.2011.04.035
37.
37. A. Apilux, W. Dungchai, W. Siangproh, N. Praphairaksit, C. S. Henry, and O. Chailapakul, Anal. Chem. 82(5), 1727 (2010).
http://dx.doi.org/10.1021/ac9022555
38.
38. Z. Nie, C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, M. Narovlyansky, and G. M. Whitesides, Lab Chip 10(4), 477 (2010).
http://dx.doi.org/10.1039/b917150a
39.
39. W. Dungchai, O. Chailapakul, and C. S. Henry, Anal. Chem. 81(14), 5821 (2009).
http://dx.doi.org/10.1021/ac9007573
40.
40. R. F. Carvalhal, M. Simão Kfouri, M. H. de Oliveira Piazetta, A. L. Gobbi, and L. T. Kubota, Anal. Chem. 82(3), 1162 (2010).
http://dx.doi.org/10.1021/ac902647r
41.
41. J. Yu, L. Ge, J. Huang, S. Wang, and S. Ge, Lab Chip 11(7), 1286 (2011).
http://dx.doi.org/10.1039/c0lc00524j
42.
42. H. Liu and R. M. Crooks, J. Am. Chem. Soc. 133(44), 17564 (2011).
http://dx.doi.org/10.1021/ja2071779
43.
43. E. Fu, B. Lutz, P. Kauffman, and P. Yager, Lab Chip 10(7), 918 (2010).
http://dx.doi.org/10.1039/b919614e
44.
44. E. Fu, P. Kauffman, B. Lutz, and P. Yager, Sens. Actuators, B 149(1), 325 (2010).
http://dx.doi.org/10.1016/j.snb.2010.06.024
45.
45. P. Kauffman, E. Fu, B. Lutz, and P. Yager, Lab Chip 10(19), 2614 (2010).
http://dx.doi.org/10.1039/c004766j
46.
46. J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens, and P. Yager, Lab Chip 10(20), 2659 (2010).
http://dx.doi.org/10.1039/c004821f
47.
47. H. Noh and S. T. Phillips, Anal. Chem. 82(10), 4181 (2010).
http://dx.doi.org/10.1021/ac100431y
48.
48. X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, Lab Chip 12(2), 274 (2012).
http://dx.doi.org/10.1039/c1lc20803a
49.
49. P. J. Bracher, M. Gupta, E. T. Mack, and G. M. Whitesides, ACS Appl. Mater. Interfaces 1(8), 1807 (2009).
http://dx.doi.org/10.1021/am900340m
50.
50. P. J. Bracher, M. Gupta, and G. M. Whitesides, Soft Matter 6(18), 4303 (2010).
http://dx.doi.org/10.1039/c0sm00031k
51.
51. P. J. Bracher, M. Gupta and G. M. Whitesides, J. Mater. Chem. 20(24), 5117 (2010).
http://dx.doi.org/10.1039/c000358a
52.
52. P. J. Bracher, M. Gupta, and G. M. Whitesides, Adv. Mater. 21(4), 445 (2009).
http://dx.doi.org/10.1002/adma.v21:4
53.
53. C.-M. Cheng, A. D. Mazzeo, J. Gong, A. W. Martinez, S. T. Phillips, N. Jain, and G. M. Whitesides, Lab Chip 10(23), 3201 (2010).
http://dx.doi.org/10.1039/c004903d
54.
54. Y. Lu, B. Lin, and J. Qin, Anal. Chem. 83(5), 1830 (2011).
http://dx.doi.org/10.1021/ac102577n
55.
55. R. Derda, A. Laromaine, A. Mammoto, S. K. Y. Tang, T. Mammoto, D. E. Ingber, and G. M. Whitesides, Proc. Natl. Acad. Sci. U.S.A. 106(44), 18457 (2009).
http://dx.doi.org/10.1073/pnas.0910666106
56.
56. R. Derda, S. K. Y. Tang, A. Laromaine, B. Mosadegh, E. Hong, M. Mwangi, A. Mammoto, D. E. Ingber, and G. M. Whitesides, PLoS ONE 6(5), e18940 (2011).
http://dx.doi.org/10.1371/journal.pone.0018940
57.
57. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem. 82(1), 3 (2009).
http://dx.doi.org/10.1021/ac9013989
58.
58. W. Zhao and A. van den berg, Lab Chip 8(12), 1988 (2008).
http://dx.doi.org/10.1039/b814043j
59.
59. W. K. T. Coltro, D. P. de Jesus, J. A. F. da Silva, C. L. do Lago, and E. Carrilho, Electrophoresis 31(15), 2487 (2010).
http://dx.doi.org/10.1002/elps.v31:15
60.
60. J. Tian, D. Kannangara, X. Li, and W. Shen, Lab Chip 10(17), 2258 (2010).
http://dx.doi.org/10.1039/c003728a
61.
61. X. Li, J. Tian, and W. Shen, ACS Appl. Mater. Interfaces 2(1), 1 (2010).
http://dx.doi.org/10.1021/am9006148
62.
62. D. R. Ballerini, X. Li, and W. Shen, Biomicrofluidics 5(1), 014105 (2011).
http://dx.doi.org/10.1063/1.3567094
63.
63. M. Reches, K. A. Mirica, R. Dasgupta, M. D. Dickey, M. J. Butte, and G. M. Whitesides, ACS Appl. Mater. Interfaces 2(6), 1722 (2010).
http://dx.doi.org/10.1021/am1002266
64.
64. S. M. Z. Hossain, R. E. Luckham, A. M. Smith, J. M. Lebert, L. M. Davies, R. H. Pelton, C. D. M. Filipe, and J. D. Brennan, Anal. Chem. 81(13), 5474 (2009).
http://dx.doi.org/10.1021/ac900660p
65.
65. S. M. Z. Hossain, R. E. Luckham, M. J. McFadden, and J. D. Brennan, Anal. Chem. 81(21), 9055 (2009).
http://dx.doi.org/10.1021/ac901714h
66.
66. R. E. Luckham and J. D. Brennan, Analyst 135(8), 2028 (2010).
http://dx.doi.org/10.1039/c0an00283f
67.
67. W. Zhao, M. A. Brook, and Y. Li, ChemBioChem 9(15), 2363 (2008).
http://dx.doi.org/10.1002/cbic.v9:15
68.
68. W. Zhao, M. M. Ali, S. D. Aguirre, M. A. Brook, and Y. Li, Anal. Chem. 80(22), 8431 (2008).
http://dx.doi.org/10.1021/ac801008q
69.
69. Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, Adv. Colloid Interface Sci. 163(1), 23 (2011).
http://dx.doi.org/10.1016/j.cis.2011.01.004
70.
70. E. Fu, S. Ramsey, P. Kauffman, B. Lutz, and P. Yager, Microfluid. Nanofluid., 1 (2010).
71.
71. A. C. Siegel, S. T. Phillips, B. J. Wiley, and G. M. Whitesides, Lab Chip 9(19), 2775 (2009).
http://dx.doi.org/10.1039/b905832j
72.
72. M. S. Khan, D. Fon, X. Li, J. Tian, J. Forsythe, G. Garnier, and W. Shen, Colloids Surf., B 75(2), 441 (2010).
http://dx.doi.org/10.1016/j.colsurfb.2009.09.032
73.
73. M. Li, J. Tian, M. Al-Tamimi, and W. Shen (submitted).
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/1/10.1063/1.3687398
Loading
/content/aip/journal/bmf/6/1/10.1063/1.3687398
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/6/1/10.1063/1.3687398
2012-03-02
2014-12-21

Abstract

“Paper-based microfluidics” or “lab on paper,” as a burgeoning research field with its beginning in 2007, provides a novel system for fluid handling and fluid analysis for a variety of applications including health diagnostics, environmental monitoring as well as food quality testing. The reasons why paper becomes an attractive substrate for making microfluidic systems include: (1) it is a ubiquitous and extremely cheap cellulosic material; (2) it is compatible with many chemical/biochemical/medical applications; and (3) it transports liquids using capillary forces without the assistance of external forces. By building microfluidic channels on paper, liquidflow is confined within the channels, and therefore, liquidflow can be guided in a controlled manner. A variety of 2D and even 3D microfluidic channels have been created on paper, which are able to transport liquids in the predesigned pathways on paper. At the current stage of its development, paper-based microfluidic system is claimed to be low-cost, easy-to-use, disposable, and equipment-free, and therefore, is a rising technology particularly relevant to improving the healthcare and disease screening in the developing world, especially for those areas with no- or low-infrastructure and limited trained medical and health professionals. The research in paper-based microfluidics is experiencing a period of explosion; most published works have focused on: (1) inventing low-cost and simple fabrication techniques for paper-based microfluidic devices; and (2) exploring new applications of paper-based microfluidics by incorporating efficient detection methods. This paper aims to review both the fabrication techniques and applications of paper-based microfluidics reported to date. This paper also attempts to convey to the readers, from the authors’ point of view the current limitations of paper-based microfluidics which require further research, and a few perspective directions this new analytical system may take in its development.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/1/1.3687398.html;jsessionid=g3800jkdkjpnc.x-aip-live-02?itemId=/content/aip/journal/bmf/6/1/10.1063/1.3687398&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A perspective on paper-based microfluidics: Current status and future trends
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/1/10.1063/1.3687398
10.1063/1.3687398
SEARCH_EXPAND_ITEM