1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.3701566
1.
1. D. W. Inglis, J. A. Davis, T. J. Zieziulewicz, D. A. Lawrence, R. H. Austin, and J. C. Sturm, J. Immuno. Methods 329, 151 (2008).
http://dx.doi.org/10.1016/j.jim.2007.10.004
2.
2. D. W. Inglis, K. J. Morton, J. A. Davis, T. J. Zieziulewicz, D. A. Lawrence, R. H. Austin, and J. C. Sturm, Lab Chip 8, 925 (2008).
http://dx.doi.org/10.1039/b800721g
3.
3. O. D. Laerum and T. Farsund, Cytometry, Part B 2, 1 (1981).
http://dx.doi.org/10.1002/cyto.v2:1
4.
4. H. M. Shapiro and R. C. Leif, Practical Flow Cytometry (Wiley-Liss, New York, 2003).
5.
5. M. Brown and C. Wittwer, Clin. Chem. 46, 1221 (2000). Available at: http://www.clinchem.org/content/46/8/1221.full.
6.
6. M. Rosenauer and M. J. Vellekoop, Biomicrofluidics 4, 043005 (2010).
http://dx.doi.org/10.1063/1.3502672
7.
7. S. H. Cho, J. M. Godin, C. H. Chen, W. Qiao, H. Lee, and Y. Lo, Biomicrofluidics 4, 043001 (2010).
http://dx.doi.org/10.1063/1.3511706
8.
8. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, Biomicrofluidics 5, 032009 (2011).
http://dx.doi.org/10.1063/1.3608136
9.
9. M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, Microfluid. Nanofluid. 10, 761 (2011).
http://dx.doi.org/10.1007/s10404-010-0707-z
10.
10. X. Mao, J. R. Waldeisen, and T. J. Huang, Lab Chip 7, 1260 (2007).
http://dx.doi.org/10.1039/b711155j
11.
11. A. Terray and S. J. Hart, Lab Chip 10, 1729 (2010).
http://dx.doi.org/10.1039/b927244e
12.
12. N. Watkins, B. M. Venkatesan, M. Toner, W. Rodriguez, and R. Bashir, Lab Chip 9, 3177 (2009).
http://dx.doi.org/10.1039/b912214a
13.
13. X. Mao, S.-C. S. Lin, C. Dong, and T. J. Huang, Lab Chip 9, 1583 (2009).
http://dx.doi.org/10.1039/b820138b
14.
14. R. Scott, P. Sethu, and C. K. Harnett, Rev. Sci. Instrum. 79, 046104 (2008).
http://dx.doi.org/10.1063/1.2900010
15.
15. C. Simonnet and A. Groisman, Appl. Phys. Lett. 87, 114104 (2005).
http://dx.doi.org/10.1063/1.2046729
16.
16. S. Chiavaroli, D. Newport, and B. Woulfe, Biomicrofluidics 4, 024110 (2010).
http://dx.doi.org/10.1063/1.3380598
17.
17. C. Huang, C. Weng, and C. P. Jen, Biomicrofluidics 5, 044101 (2011).
http://dx.doi.org/10.1063/1.3646757
18.
18. I. Sraj, C. D. Eggleton, R. Jimenez, E. Hoover, J. Squier, J. Chichester, and D. W. M. Marr, J. Biomed. Opt. 15, 047010 (2010).
http://dx.doi.org/10.1117/1.3470124.1
19.
19. C. Simonnet and A. Groisman, Anal. Chem. 78, 5653 (2006).
http://dx.doi.org/10.1021/ac060340o
20.
20. C.-C. Fu, G. Ossato, M. Long, M. A. Digman, A. Gopinathan, L. P. Lee, E. Gratton, and M. Khine, Appl. Phys. Lett. 97, 203101 (2010).
http://dx.doi.org/10.1063/1.3495773
21.
21. T. G. Jensen, L. B. Nielsen, and J. P. Kutter, Electrophoresis 32, 1224 (2011).
http://dx.doi.org/10.1002/elps.201000593
22.
22. O. Laczka, J. M. Maesa, N. Godino, J. Campo, M. F. Hansen, J. P. Kutter, D. Snakenborg, F. X. Pascual, and E. Baldrich, Biosens. Bioelectron. 26, 3633 (2011).
http://dx.doi.org/10.1016/j.bios.2011.02.019
23.
23. A.-Q. Liu, Biomicrofluidics 4, 042901 (2010).
http://dx.doi.org/10.1063/1.3533774
24.
24. C. Dong, M. J. Slattery, B. M. Rank, and J. You, Ann. Biomed. Eng. 30, 344 (2002).
http://dx.doi.org/10.1114/1.1468889
25.
25. J. You, A. M. Mastro, and C. Dong, Exp. Cell Res. 248, 160 (1999).
http://dx.doi.org/10.1006/excr.1999.4388
26.
26. W. R. Rodriguez, N. Christodoulides, P. N. Floriano, S. Graham, S. Mohanty, M. Dixon, M. Hsiang, T. Peter, S. Zavahir, I. Thior, D. Romanovicz, B. Bernard, A. P. Goodey, B. D. Walker, and J. T. McDevitt, PLoS Med. 2, e182 (2005).
http://dx.doi.org/10.1371/journal.pmed.0020182
27.
27. X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, Lab Chip 7, 170 (2007).
http://dx.doi.org/10.1039/b612966h
28.
28. P. K. Dagur, A. Biancotto, L. Wei, H. N. Sen, M. Yao, W. Strober, R. B. Nussenblatt, and J. P. McCoy, Jr., J. Autoimmun. 37(4 ), 319 (2011).
http://dx.doi.org/10.1016/j.jaut.2011.09.003
29.
29. X. Cai, G. Pacheco-Rodriguez, Q. Y. Fan, M. Haughey, L. Samsel, S. El-Chemaly, H. P. Wu, J. P. McCoy, W. K. Steagall, J. P. Lin, T. N. Darling, and J. Moss, Am. J. Respir. Crit. Care Med. 182(11 ), 1410 (2010).
http://dx.doi.org/10.1164/rccm.201003-0489OC
30.
30. N. A. Kentrou, N. J. Tsagarakis, K. Tzanetou, M. Damala, K. A. Papadimitriou, D. Skoumi, A. Stratigaki, N. I. Anagnostopoulos, E. Malamou-Lada, P. Athanassiadou, and G. Paterakis, Cytometry, Part B 80B, 324 (2011).
http://dx.doi.org/10.1002/cyto.b.20608
31.
31. J. E. Allen, L. S. Hart, D. T. Dicker, W. Wang, and W. S. El-Deiry, Cancer Biol. Ther. 8, 2193 (2009).
http://dx.doi.org/10.4161/cbt.8.22.10450
32.
32. J. F. Dorsey, A. Mintz, X. Tian, M. L. Dowling, J. P. Plastaras, D. T. Dicker, G. D. Kao, and W. S. El-Deiry, Mol. Cancer Ther. 8, 3285 (2009).
http://dx.doi.org/10.1158/1535-7163.MCT-09-0415
33.
33. Y. Malka and S. Eden, Cytometry, Part A 79A, 243 (2011).
http://dx.doi.org/10.1002/cyto.a.21051
34.
34. H. W. Wu, R. C. Hsu, C. C. Lin, S. M. Hwang, and G. B. Lee, Biomicrofluidics 4, 024112 (2010).
http://dx.doi.org/10.1063/1.3454767
35.
35. J. Gordin, C.-H. Chen, S. H. C. Cho, W. Qiao, F. Tsai, and Y.-H. Lo, J. Biophotonics 1, 355 (2008).
http://dx.doi.org/10.1002/jbio.200810018
36.
36. J.-M. Lim, S.-H. Kim, and S.-M. Yang, Microfluid. Nanofluid. 10, 211 (2011).
http://dx.doi.org/10.1007/s10404-010-0649-5
37.
37. J. Godin, V. Lien, and Y.-H. Lo, Appl. Phys. Lett. 89, 061106 (2006).
http://dx.doi.org/10.1063/1.2266887
38.
38. J. Godin and Y.-H. Lo, Biomed. Opt. Express 1, 1472 (2010).
http://dx.doi.org/10.1364/BOE.1.001472
39.
39. M. J. Rosenbluth, W. A. Lam, and D. A. Fletcher, Lab Chip 8, 1062 (2008).
http://dx.doi.org/10.1039/b802931h
40.
40. J. Oakey, R. W. Applegate, J. E. Arellano, D. D. Carlo, S. W. Graves, and M. Toner, Anal. Chem. 82, 3862 (2010).
http://dx.doi.org/10.1021/ac100387b
41.
41. D. Holmes, D. Pettigrew, C. H. Reccius, J. D. Gwyer, C. van Berkel, J. Holloway, D. E. Davies, and H. Morgan, Lab Chip 9, 2881 (2009).
http://dx.doi.org/10.1039/b910053a
42.
42. M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, Lab Chip 11, 1138 (2011).
http://dx.doi.org/10.1039/c0lc00500b
43.
43. T. J. Kipps and D. A. Carson, in Williams Hematology, 7th ed., edited by E. Beutler, M. A. Lichtman, B. S. Coller, T. J. Kipps, U. Seligsohn, and J. Prchal (McGraw-Hill, Columbus, 2005), Chap. 75, p. 1031.
44.
44. C.-H. Lin and G.-B. Lee, J. Micromech. Microeng. 13, 447 (2003).
http://dx.doi.org/10.1088/0960-1317/13/3/315
45.
45. C. Chen, S. H. Cho, F. Tsai, A. Erten, and Y.-H. Lo, Biomed. Microdevices 11, 1223 (2009).
http://dx.doi.org/10.1007/s10544-009-9341-5
46.
46. J. P. Golden, J. S. Kim, J. S. Erickson, L. R. Hilliard, P. B. Howell, G. P. Anderson, M. Nasir, and F. S. Ligler, Lab Chip 9, 1942 (2009).
http://dx.doi.org/10.1039/b822442k
47.
47. M. J. Kennedy, S. J. Stelick, L. G. Sayam, A. Yen, D. Erickson, and C. A. Batt, Lab Chip 11, 1138 (2011).
http://dx.doi.org/10.1039/c0lc00500b
48.
48. H. Cho, J. M. Godin, C.-H. Chen, W. Qiao, H. Lee, and Y.-H. Lo, Biomicrofluidics 4, 043001 (2010).
http://dx.doi.org/10.1063/1.3511706
49.
49. J. Loureiro, P. Z. Andrade, S. Cardoso, C. L. da Silva, J. M. Cabral, and P. P. Freitas, Lab Chip 11, 2255 (2011).
http://dx.doi.org/10.1039/c0lc00324g
50.
50. D. Spencer and H. Morgan, Lab Chip 11, 1234 (2011).
http://dx.doi.org/10.1039/c1lc20016j
51.
51. S. C. Hur, H. T. K. Tse, and D. Di Carlo, Lab Chip 10, 274 (2010).
http://dx.doi.org/10.1039/b919495a
52.
52. V. Lien, K. Zhao, Y. Berdichevsky, and Y.-H. Lo, IEEE J. Sel. Top. Quantum Electron. 11, 827 (2005).
http://dx.doi.org/10.1109/JSTQE.2005.857743
53.
53. C. Church, J. Zhu, G. Wang, T. J. Tzeng, and X. Xuan, Biomicrofluidics 3, 044109 (2009).
http://dx.doi.org/10.1063/1.3267098
54.
54. Z. Wu, A. Q. Liu, and K. Hjort, J. Micromech. Microeng. 17, 1992 (2007).
http://dx.doi.org/10.1088/0960-1317/17/10/010
55.
55. K. J. Liu, T. D. Rane, Y. Zhang, and T.-H. Wang, J. Am. Chem. Soc. 133, 6898 (2011).
http://dx.doi.org/10.1021/ja200279y
56.
56. R. Afshar, Y. Moser, T. Lehnert, and M. A. M. Gijs, Anal. Chem. 83, 1022 (2011).
http://dx.doi.org/10.1021/ac102813x
57.
57. J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. J. Huang, Lab Chip 8, 221 (2008).
http://dx.doi.org/10.1039/b716321e
58.
58. J. Shi, S. Yazdi, S.-C. S. Lin, X. Ding, I.-K. Chiang, K. Sharp, and T. J. Huang, Lab Chip 11, 2319 (2011).
http://dx.doi.org/10.1039/c1lc20042a
59.
59. C. P. Jen and W. F. Chen, Biomicrofluidics 5, 044105 (2011).
http://dx.doi.org/10.1063/1.3658644
60.
60. I. F. Cheng, H. C. Chang, D. Hou, and H. C. Chang, Biomicrofluidics 1, 021503 (2007).
http://dx.doi.org/10.1063/1.2723669
61.
61. C.-C. Chang, Z.-X. Huang, and R.-J. Yang, J. Micromech. Microeng. 17, 1479 (2007).
http://dx.doi.org/10.1088/0960-1317/17/8/009
62.
62. S. Chung, S. J. Park, J. K. Kim, C. Chung, D. C. Han, and J. K. Chang, Microsyst. Technol. 9, 525 (2003).
http://dx.doi.org/10.1007/s00542-003-0302-2
63.
63. T. A. Lin, A. E. Hosoi, and D. J. Ehrlich, Biomicrofluidics 3, 014101 (2009).
http://dx.doi.org/10.1063/1.3055278
64.
64. M. G. Lee, S. Choi, and J. K. Park, Lab Chip 9, 3155 (2009).
http://dx.doi.org/10.1039/b910712f
65.
65. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Lab Chip 8, 1906 (2008).
http://dx.doi.org/10.1039/b807107a
66.
66. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, Lab Chip 9, 2973 (2009).
http://dx.doi.org/10.1039/b908271a
67.
67. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
68.
68. J. Shi, H. Huang, Z. Stratton, A. Lawit, Y. Huang, and T. J. Huang, Lab Chip 9, 3354 (2009).
http://dx.doi.org/10.1039/b915113c
69.
69. J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, and T. J. Huang, Lab Chip 9, 2890 (2009).
http://dx.doi.org/10.1039/b910595f
70.
70. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, Lab Chip 9, 2050 (2009).
http://dx.doi.org/10.1039/b822982a
71.
71. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, Microfluid. Nanofluid. 7, 727 (2009).
http://dx.doi.org/10.1007/s10404-009-0444-3
72.
72. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, Lab Chip 7, 1303 (2007).
http://dx.doi.org/10.1039/b708863a
73.
73. J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, and T. J. Huang, Lab Chip 9, 2890 (2009).
http://dx.doi.org/10.1039/b910595f
74.
74. D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, Lab Chip 9, 2738 (2009).
http://dx.doi.org/10.1039/b903687c
75.
75. X. Mao, Z. I. Stratton, A. A. Nawaz, S.-C. S. Lin, and T. J. Huang, Biomicrofluidics 4, 043007 (2010).
http://dx.doi.org/10.1063/1.3497934
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.3701566
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Configuration of the flow cytometry chip. The fluidic channel is for 3D on-chip focusing of particles. Inlets A and B are for particles and the vertical-focusing sheath flow, respectively. Inlets C and D are for the horizontal-focusing sheath flow. The arrangement of the optical fibers is indicated in the figure.

Image of FIG. 2.

Click to view

FIG. 2.

(a) An assembled flow cytometry chip whose size is comparable to a U.S. quarter. The fluidic channel, optical fibers, and coupled laser beam can be clearly seen in the image. (b) A microscopic image indicating hydrodynamic focusing and the arrangement of the optical fibers. Inlet A is mixed with fluorescent dye to show the focused stream.

Image of FIG. 3.

Click to view

FIG. 3.

Fabrication procedure of the flow cytometry chip. (a) PDMS layer for fluidic channel/fiber-insertion channel. (b) PDMS layer sealed with a glass substrate. (c) Insertion of fluidic tubings. (d) Insertion of optical fibers.

Image of FIG. 4.

Click to view

FIG. 4.

Simultaneous detection of FSC, SSC, and FL signals from two types of fluorescent microparticles. The inset shows a 10 ms snapshot.

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of 3D scatter plots obtained from (a) the flow cytometry chip and (b) a commercial flow cytometer (Beckman-Coulter FC500).

Tables

Generic image for table

Click to view

Table I.

Comparison of CVs of the flow cytometry chip and a commercial flow cytometer (Beckman-Coulter FC500) for the same sets of fluorescent microparticles (particles #1 and #2).

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.3701566
2012-04-20
2014-04-16

Abstract

In this work, we demonstrate an integrated, single-layer, miniature flow cytometrydevice that is capable of multi-parametric particle analysis. The device integrates both particle focusing and detection components on-chip, including a “microfluidic drifting” based three-dimensional (3D) hydrodynamic focusing component and a series of optical fibers integrated into the microfluidic architecture to facilitate on-chip detection. With this design, multiple optical signals (i.e., forward scatter, side scatter, and fluorescence) from individual particles can be simultaneously detected. Experimental results indicate that the performance of our flow cytometry chip is comparable to its bulky, expensive desktop counterpart. The integration of on-chip 3D particle focusing with on-chip multi-parametric optical detection in a single-layer, mass-producible microfluidic device presents a major step towards low-cost flow cytometry chips for point-of-care clinical diagnostics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.3701566.html;jsessionid=ckj8iqc0a6lfn.x-aip-live-02?itemId=/content/aip/journal/bmf/6/2/10.1063/1.3701566&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: An integrated, multiparametric flow cytometry chip using “microfluidic drifting” based three-dimensional hydrodynamic focusing
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.3701566
10.1063/1.3701566
SEARCH_EXPAND_ITEM