1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Biosensors for immune cell analysis—A perspective
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.4706845
1.
1. S. Werner and R. Grose, Physiol Rev. 83, 835870 (2003).
2.
2. M. J. Smyth, G. P. Dunn, and R. D. Schreiber, Adv Immunol. 90, 150 (2006).
http://dx.doi.org/10.1016/S0065-2776(06)90001-7
3.
3. S. Nishimura, I. Manabe, M. Nagasaki, K. Eto, H. Yamashita, M. Ohsugi, M. Otsu, K. Hara, K. Ueki, S. Sugiura, K. Yoshimura, T. Kadowaki, and R. Nagai, Nat. Med. 15, 914920 (2009).
http://dx.doi.org/10.1038/nm.1964
4.
4. G. K. Hansson, A. K. Robertson, and C. Soderberg-Naucler, Annu Rev Pathol. 1, 297329 (2006).
http://dx.doi.org/10.1146/annurev.pathol.1.110304.100100
5.
5. D. L. Kaufman, M. Clare-Salzler, J. Tian, T. Forsthuber, G. S. Ting, P. Robinson, M. A. Atkinson, E. E. Sercarz, A. J. Tobin, and P. V. Lehmann, Nature 366, 6972 (1993).
http://dx.doi.org/10.1038/366069a0
6.
6. E. Maverakis, Y. Miyamura, M. P. Bowen, G. Correa, Y. Ono, and H. Goodarzi, J. Autoimmun. 34, J247J257 (2010).
http://dx.doi.org/10.1016/j.jaut.2009.11.011
7.
7. P. V. Lehmann, T. Forsthuber, A. Miller, and E. E. Sercarz, Nature 358, 155157 (1992).
http://dx.doi.org/10.1038/358155a0
8.
8. N. K. Jerne, Proc. Natl. Acad. Sci. U. S. A. 41, 849857 (1955).
http://dx.doi.org/10.1073/pnas.41.11.849
9.
9. N. K. Jerne, Ann. Immunol. (Paris). 125C, 373389 (1974).
10.
10. F. M. Burnet, Aust. J. Sci. 20, 6769 (1957).
11.
11. D. W. Talmage, Science 129, 16431648 (1959).
http://dx.doi.org/10.1126/science.129.3364.1643
12.
12. G. J. Nossal and J. Lederberg, Nature 181, 14191420 (1958).
http://dx.doi.org/10.1038/1811419a0
13.
13. B. Benacerraf and H. O. McDevitt, Science 175, 273279 (1972).
http://dx.doi.org/10.1126/science.175.4019.273
14.
14. B. Benacerraf, J. Immunol. 120, 18091812 (1978).
15.
15. E. E. Sercarz and E. Maverakis, Nat. Rev. Immunol. 3, 621629 (2003).
http://dx.doi.org/10.1038/nri1149
16.
16. E. S. Trombetta and I. Mellman, Annu. Rev. Immunol. 23, 9751028 (2005).
http://dx.doi.org/10.1146/annurev.immunol.22.012703.104538
17.
17. D. N. Garboczi, P. Ghosh, U. Utz, Q. R. Fan, W. E. Biddison, and D. C. Wiley, Nature 384, 134141 (1996).
http://dx.doi.org/10.1038/384134a0
18.
18. T. R. Mosmann and R. L. Coffman, Annu. Rev. Immunol. 7, 145173 (1989).
http://dx.doi.org/10.1146/annurev.iy.07.040189.001045
19.
19. H. Zola, B. Swart, A. Banham, S. Barry, A. Beare, A. Bensussan, L. Boumsell, D. B. C, H. J. Buhring, G. Clark, P. Engel, D. Fox, B. Q. Jin, P. J. Macardle, F. Malavasi, D. Mason, H. Stockinger, and X. Yang, J. Immunol. Methods 319, 15 (2007).
http://dx.doi.org/10.1016/j.jim.2006.11.001
20.
20. C. D. Jennings and K. A. Foon, Blood 90, 28632892 (1997).
21.
21. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, Nat. Biotechnol. 17, 11091111 (1999).
http://dx.doi.org/10.1038/15095
22.
22. N. Hashemi, J. S. Erickson, J. P. Golden, K. M. Jackson, and F. S. Ligler, Biosens. Bioelectrons. 26, 42634269 (2011).
http://dx.doi.org/10.1016/j.bios.2011.03.042
23.
23. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, Biomicrofluidics 5, 032009 (2011).
http://dx.doi.org/10.1063/1.3608136
24.
24. L. Belov, O. de la Vega, C. G. dos Remedios, S. P. Mulligan, and R. I. Christopherson, Cancer Res. 61, 44834489 (2001).
25.
25. L. Belov, P. Huang, J. S. Chrisp, S. P. Mulligan, and R. I. Christopherson, J. Immunol. Methods 305, 1019 (2005).
http://dx.doi.org/10.1016/j.jim.2005.07.007
26.
26. P. B. Ellmark, L. Belov, P. Huang, C. S. Lee, M. J. Solomon, D. K. Morgan, and C. Christopherson, Proteomics 6, 17911802 (2006).
http://dx.doi.org/10.1002/pmic.200500468
27.
27. D. S. Chen, Y. Soen, T. B. Stuge, P. P. Lee, J. S. Weber, P. O. Brown, and M. M. Davis, PLoS Med. 2, 10181030 (2005).
http://dx.doi.org/10.1371/journal.pmed.0020265
28.
28. Y. Soen, D. S. Chen, D. L. Kraft, M. M. Davis, and P. O. Brown, PLoS Biol. 1, 429438 (2003).
http://dx.doi.org/10.1371/journal.pbio.0000065
29.
29. Q. Han, E. M. Bradshaw, B. Nilsson, D. A. Hafler, and J. C. Love, Lab Chip 10, 13911400 (2010).
http://dx.doi.org/10.1039/b926849a
30.
30. J. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. van der Veen, and H. L. Ploegh, Nat. Biotechnol. 24, 703707 (2006).
http://dx.doi.org/10.1038/nbt1210
31.
31. A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, Nat. Methods 6, 147152 (2009).
http://dx.doi.org/10.1038/nmeth.1290
32.
32. S. Y. Cui, Y. P. Liu, W. Wang, Y. Sun, and Y. B. Fan, Biomicrofluidics 5, 032003 (2011).
http://dx.doi.org/10.1063/1.3623411
33.
33. H. Shadpour, J. S. Zawistowski, A. Herman, K. Hahn, and N. L. Allbritton, Anal. Chim. Acta. 696, 101107 (2011).
http://dx.doi.org/10.1016/j.aca.2011.04.012
34.
34. P. C. Gach, Y. L. Wang, C. Phillips, C. E. Sims, and N. L. Allbritton, Biomicrofluidics 5, 032002 (2011).
http://dx.doi.org/10.1063/1.3608133
35.
35. S. H. Nam, H. J. Lee, K. J. Son, and W. G. Koh, Biomicrofluidics 5, 032001 (2011).
http://dx.doi.org/10.1063/1.3608130
36.
36. T. Kalisky and S. R. Quake, Nat. Methods 8, 311314 (2011).
http://dx.doi.org/10.1038/nmeth0411-311
37.
37. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng. 3, 335373 (2001).
http://dx.doi.org/10.1146/annurev.bioeng.3.1.335
38.
38. A. Folch and M. Toner, Annu. Rev. Biomed. Eng. 2, 227 (2000).
http://dx.doi.org/10.1146/annurev.bioeng.2.1.227
39.
39. A. Revzin, K. Sekine, A. Sin, R. G. Tompkins, and M. Toner, Lab Chip. 5, 3037 (2005).
http://dx.doi.org/10.1039/b405557h
40.
40. J. Doh and D. J. Irvine, Proc. Natl. Acad. Sci. U.S.A. 103, 57005705 (2006).
http://dx.doi.org/10.1073/pnas.0509404103
41.
41. E. M. Bradshaw, S. C. Kent, V. Tripuraneni, T. Orban, H. L. Ploegh, D. A. Hafler, and J. C. Love, Clin. Immun. 129, 1018 (2008).
http://dx.doi.org/10.1016/j.clim.2008.06.009
42.
42. C. M. Story, E. Papa, C. C. A. Hu, J. L. Ronan, K. Herlihy, H. L. Ploegh, and J. C. Love, Proc. Natl. Acad. Sci. U.S.A. 105, 1790217907 (2008).
http://dx.doi.org/10.1073/pnas.0805470105
43.
43. A. Jin, T. Ozawa, K. Tajiri, T. Obata, S. Kondo, K. Kinoshita, S. Kadowaki, K. Takahashi, T. Sugiyama, H. Kishi, and A. Muraguchi, Nat. Med. 15, 1088U146 (2009).
http://dx.doi.org/10.1038/nm.1966
44.
44. C. Ma, R. Fan, H. Ahmad, Q. H. Shi, B. Comin-Anduix, T. Chodon, R. C. Koya, C. C. Liu, G. A. Kwong, C. G. Radu, A. Ribas, and J. R. Heath, Nature Medicine. 17, 738U133 (2011).
http://dx.doi.org/10.1038/nm.2375
45.
45. K. Sekine, A. Revzin, R. G. Tompkins, and M. Toner, J. Immunol. Methods 313, 96109 (2006).
http://dx.doi.org/10.1016/j.jim.2006.03.017
46.
46. H. Zhu, M. Macal, M. D. George, S. Dandekar, and A. Revzin, Anal. Chim. Acta. 608, 186196 (2008).
http://dx.doi.org/10.1016/j.aca.2007.12.021
47.
47. H. Zhu, G. S. Stybayeva, M. Macal, M. D. George, S. Dandekar, and A. Revzin, Lab Chip. 8, 21972205 (2008).
http://dx.doi.org/10.1039/b810244a
48.
48. G. Stybayeva, O. Mudanyali, S. Seo, J. Silangcruz, M. Macal, E. Ramanculov, S. Dandekar, A. Erlinger, A. Ozcan, and A. Revzin, Anal. Chem. 82, 37363744 (2010).
http://dx.doi.org/10.1021/ac100142a
49.
49. J. H. Seo, L. J. Chen, S. V. Verkhoturov, E. A. Schweikert, and A. Revzin, Biomaterials 32, 54785488 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.04.026
50.
50. H. Zhu, G. S. Stybayeva, J. Silangcruz, J. Yan, E. Ramanculov, S. Dandekar, M. D. George, and A. Revzin, Anal. Chem. 81, 81508156 (2009).
http://dx.doi.org/10.1021/ac901390j
51.
51. M. Huse, E. J. Quann, and M. M. Davis, Nat. Immunol. 10, 11051111 (2008).
http://dx.doi.org/10.1038/ni.f.215
52.
52. G. Stybayeva, M. Kairova, E. Ramanculov, A. L. Simonian, and A. Revzin, Colloids Surf., B 80, 251255 (2010).
http://dx.doi.org/10.1016/j.colsurfb.2010.06.015
53.
53. S. Milgram, S. Cortes, M. B. Villiers, P. Marche, A. Buhot, T. Livache, and Y. Roupioz, Biosens. Bioelectron. 26, 27282732 (2011).
http://dx.doi.org/10.1016/j.bios.2010.09.044
54.
54. J. G. Shackman, G. M. Dahlgren, J. L. Peters, and R. T. Kennedy, Lab Chip. 5, 5663 (2005).
http://dx.doi.org/10.1039/b404974h
55.
55. J. F. Dishinger, K. R. Reid, and R. T. Kennedy, Anal. Chem. 81, 31193127 (2009).
http://dx.doi.org/10.1021/ac900109t
56.
56. C. Tuerk and L. Gold, Science 249, 505510 (1990).
http://dx.doi.org/10.1126/science.2200121
57.
57. A. D. Ellington and J. W. Szostak, Nature 346, 818822 (1990).
http://dx.doi.org/10.1038/346818a0
58.
58. N. Hamaguichi, A. D. Ellington, and M. Stanton, Anal. Biochem. 294, 126131 (2001).
http://dx.doi.org/10.1006/abio.2001.5169
59.
59. J. J. Li, X. Fang, and W. Tan, Biochem. Biophys. Res. Commun. 292, 3140 (2002).
http://dx.doi.org/10.1006/bbrc.2002.6581
60.
60. Y. Xiao, A. A. Lubin, A. J. Heeger, and K. W. Plaxco, Angew. Chem., Int. Ed. 44, 54565459 (2005).
http://dx.doi.org/10.1002/anie.200500989
61.
61. N. Tuleuova, C. N. Jones, J. Yan, E. Ramanculov, Y. Yokobayashi, and A. Revzin, Anal. Chem. 82, 18511857 (2010).
http://dx.doi.org/10.1021/ac9025237
62.
62. N. Tuleuova and A. Revzin, Cell. Mol. Bioeng. 3, 337344 (2010).
http://dx.doi.org/10.1007/s12195-010-0148-5
63.
63. Y. Liu, N. Tuleuova, E. Ramanculov, and A. Revzin, Anal. Chem. 82, 81318136 (2010).
http://dx.doi.org/10.1021/ac101409t
64.
64. Y. Liu, J. Yan, M. C. Howland, T. Kwa, and A. Revzin, Anal Chem. 83, 82868292 (2011).
http://dx.doi.org/10.1021/ac202117g
65.
65. J. Yan, Y. H. Sun, H. Zhu, L. Marcu, and A. Revzin, Biosens. Bioelectron. 24, 26042610 (2009).
http://dx.doi.org/10.1016/j.bios.2009.01.029
66.
66. J. Yan, V. A. Pedrosa, J. Enomoto, A. L. Simonian, and A. Revzin, Biomicrofluidics 5, 032008 (2011).
http://dx.doi.org/10.1063/1.3624739
67.
67. J. C. Trefry, J. L. Monahan, K. M. Weaver, A. J. Meyerhoefer, M. M. Markopolous, Z. S. Arnold, D. P. Wooley, and I. E. Pavel, J. Am. Chem. Soc. 132, 1097010972 (2010).
http://dx.doi.org/10.1021/ja103809c
68.
68. W. Zhao, S. Schafer, J. Choi, Y. J. Yamanaka, M. L. Lombardi, S. Bose, A. L. Carlson, J. A. Phillips, W. Teo, I. A. Droujinine, C. H. Cui, R. K. Jain, J. Lammerding, J. C. Love, C. P. Lin, D. Sarkar, R. Karnik, and J. M. Karp, Nat. Nanotechnol. 6, 52431 (2011).
http://dx.doi.org/10.1038/nnano.2011.101
69.
69. A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhausser, and M. J. Schoning, Sens. Actuators B 111, 470480 (2005).
http://dx.doi.org/10.1016/j.snb.2005.03.083
70.
70. E. Stern, R. Wagner, F. J. Sigworth, R. Breaker, T. M. Fahmy, and M. A. Reed, Nano Lett. 7, 34053409 (2007).
http://dx.doi.org/10.1021/nl071792z
71.
71. I. Suni, Trends Analyt. Chem. 27, 604611 (2008).
http://dx.doi.org/10.1016/j.trac.2008.03.012
72.
72. L. J. Cheng and H. C. Chang, Biomicrofluidics 5, 46502 (2011).
http://dx.doi.org/10.1063/1.3657928
73.
73. L. Onsager and R. M. Fuoss, J. Phys. Chem. 36, 26892778 (1932).
http://dx.doi.org/10.1021/j150341a001
74.
74. Y. M. Chi, T. Jung, and G. Cauwenberghs, IEEE Rev. Biomed. Eng. 3, 106119 (2010).
75.
75. S. Basuray, S. Senapati, A. Aijian, A. R. Mahon, and H. C. Chang, ACS Nano 3, 182330 (2009).
http://dx.doi.org/10.1021/nn9004632
76.
76. H. C. Chang and G. Yossifon, Biomicrofluidics 3, 12001 (2009).
http://dx.doi.org/10.1063/1.3056045
77.
77. S. Senapati, S. Basuray, Z. Slouka, L. J. Cheng, and H. C. Chang, Top. Curr. Chem. 304, 15369 (2011).
http://dx.doi.org/10.1007/978-3-642-23050-9
78.
78. G. Yossifon, Y. C. Chang, and H. C. Chang, Phys. Rev. Lett. 103, 154502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.154502
79.
79. K. Dheda, R. V. Smit, M. Badri, and M. Pai, Curr. Opin. Pulm. Med. 15, 188200 (2009).
http://dx.doi.org/10.1097/MCP.0b013e32832a0adc
80.
80. T. H. Rider, M. S. Petrovick, F. E. Nargi, J. D. Harper, E. D. Schwoebel, R. H. Mathews, D. J. Blanchard, L. T. Bortolin, A. M. Young, J. Z. Chen, and M. A. Hollis, Science 301, 213215 (2003).
http://dx.doi.org/10.1126/science.1084920
81.
81. A. Jin, T. Ozawa, K. Tajiri, T. Obata, H. Kishi, and A. Muraguchi, Nat. Protoc. 6, 668676 (2011).
http://dx.doi.org/10.1038/nprot.2011.322
82.
82. M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White, and S. A. Rosenberg, Science 298, 850854 (2002).
http://dx.doi.org/10.1126/science.1076514
83.
83. D. L. Porter, B. L. Levine, M. Kalos, A. Bagg, and C. H. June, N. Engl. J. Med. 365, 72533 (2011).
http://dx.doi.org/10.1056/NEJMoa1103849
84.
84. E. Bettelli, M. Oukka, and V. K. Kuchroo, Nat. Immunol. 8, 345350 (2007).
http://dx.doi.org/10.1038/ni0407-345
85.
85. W. Zhang, Y. Ono, Y. Miyamura, C. L. Bowlus, M. E. Gershwin, and E. Maverakis, J Autoimmun. 37, 7178 (2011).
http://dx.doi.org/10.1016/j.jaut.2011.05.009
86.
86. J. L. Baron, J. A. Madri, N. H. Ruddle, G. Hashim, and C. A. Janeway, Jr., J. Exp. Med. 177, 5768 (1993).
http://dx.doi.org/10.1084/jem.177.1.57
87.
87. I. K. Zervantonakis, C. R. Kothapalli, S. Chung, R. Sudo, and R. D. Kamm, Biomicrofluidics 5, 013406 (2011).
http://dx.doi.org/10.1063/1.3553237
88.
88. S. N. Bhatia, U. J. Balis, M. L. Yarmush, and M. Toner, FASEB J. 13, 18831900 (1999).
89.
89. S. N. Bhatia, M. L. Yarmush, and M. Toner, J. Biomed. Mater. Res. 34, 189199 (1997).
http://dx.doi.org/10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO;2-M
90.
90. J. Kim, M. Hegde, and A. Jayaraman, Lab Chip. 10, 4350 (2010).
http://dx.doi.org/10.1039/b911367c
91.
91. Y. D. Gao, D. Majumdar, B. Jovanovic, C. Shaifer, P. C. Lin, A. Zijlstra, D. J. Webb, and D. Y. Li, Biomed. Microdevices 13, 539548 (2011).
http://dx.doi.org/10.1007/s10544-011-9523-9
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4706845
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

An example of solid-phase cytometry platform. Microwells composed of non-fouling hydrogel (PEG) are fabricated on glass. Dimensions of the wells are made large enough to house individual cells. Approximately 1 × 106 wells may be packed onto a standard 3 × 1 in glass slide. Upon seeding onto this surface, a large fraction of wells (∼70%) will contain single cells. Reproduced by permission from Revzin et al., Lab on a Chip 5, 30–37 (2005). Copyright © 2005 by The Royal Society of Chemistry.

Image of FIG. 2.

Click to view

FIG. 2.

Co-localizing leukocytes and secreted cytokine signals. (a) Arrays of Ab spots for capturing leukocytes and detecting secreted cytokines. Reproduced by permission from Zhu et al., Lab on a Chip 8, 2197–2205 (2008). Copyright © 2008 by The Royal Society of Chemistry. (b) Arrays of hydrogel microwells functionalized with Abs to enable capture of single cells and detection of secreted cytokine molecules. Reprinted with permission from Zhu et al., Analytical Chemistry 81, 8150–8156 (2009). Copyright © 2009 by American Chemical Society. (c) Integration of microarrays into microfluidic devices for analysis small blood volume.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Mixed array of cell and cytokine specific Abs. T cells are captured on anti-CD4 Ab spots. Reproduced by permission from Zhu et al., Lab on a Chip 8, 2197–2205 (2008). Copyright © 2008 by The Royal Society of Chemistry; (b) single Tcells captured in Ab-functionalized microwells. (c) IFN-γ signal co-localized with single cells. Green fluorescence is due to immunostaining for secreted IFN-γ whereas red fluorescence is for CD4 surface antigen. (b) and (c) Reprinted with permission from Zhu et al., Analytical Chemistry 81, 8150–8156 (2009). Copyright © 2009 American Chemical Society.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Individual Au electrodes fabricated on glass slides are surrounded by PEG hydrogel and incubated with T cell-specific antibodies. Leukocytes are captured on Ab-modified glass regions next to aptasensors. Cytokine release is detected at Au electrodes using aptamer recognition layer consisting of DNA hairpin containing redox reporters. (b) A microdevice with sensing electrode arrays integrated into microfluidic device currently used for cytokine detection. (c) Immune cells captured next to sensing Au electrode (black circle). Reprinted with permission from Liu et al., Analytical Chemistry 83, 8286–8292 (2011). Copyright © 2011 American Chemical Society.

Image of FIG. 5.

Click to view

FIG. 5.

Continuous monitoring of TNF from monocytes captured and cultured next to sensing electrodes analogous to those described in Figure 4. Measurements are taken every 4 min. Signal suppression—decrease in signal due to biding of cytokine molecules—is correlated to TNF concentration through calibration curve (not shown).

Image of FIG. 6.

Click to view

FIG. 6.

Merged brightfield/fluorescence image showing integration of hydrogel-based H2O2 sensor with TNF sensor.(a) Macrophages were treated with LPS for 3 h and the sample was stained with biotinylated anti-TNF Ab and neutravidin-FITC. The green fluorescence indicates secreted TNF from cells. (b) The addition of 1 µM of H2O2 and Amplex Red resulted in appearance of red fluorescence signal in the PEG hydrogel walls.

Image of FIG. 7.

Click to view

FIG. 7.

An on-chip bipolar membrane pH actuator. The image in (a) shows how a DC field across a bipolar membrane can dissociate water and generate protons and hydroxyl ions at a controllable rate. Two such bipolar membranes are fabricated up stream of a flow channel and the protons/hydroxyl ions are mixed by a static mixer into a buffer of a specific pH between 2 and 10 in (b). The mixed streams are shown in (c) with a color chart for the universal pH dye.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Optical microscopic image of a charge-selective membrane based preconcentrator. (b) Concentration of fluorescently labeled molecules taking place 10 s after applying a voltage bias of 10 V. The scale bars represent 50 μm.

Image of FIG. 9.

Click to view

FIG. 9.

Nonlinear PNP and PN membrane sensors for cytokine and mRNA. Molecular docking produces a surface membrane with an opposite charge. This nonlinear ion dynamics due to molecule docking produces hysteretic IV with nonlinear amplification of the ion current signal for the docking events. (Note that the signal is on the order of several volts instead of the usual mV in electrochemical sensing.) These membrane components can be integrated into the culture scaffold in Fig. 1.

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.4706845
2012-04-26
2014-04-20

Abstract

Massively parallel analysis of single immune cells or small immune cell colonies for disease detection, drug screening, and antibody production represents a “killer app” for the rapidly maturing microfabrication and microfluidic technologies. In our view, microfabricated solid-phase and flow cytometry platforms of the future will be complete with biosensors and electrical/mechanical/optical actuators and will enable multi-parametric analysis of cell function, real-time detection of secreted signals, and facile retrieval of cells deemed interesting.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.4706845.html;jsessionid=1at1gv99adt7o.x-aip-live-01?itemId=/content/aip/journal/bmf/6/2/10.1063/1.4706845&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Biosensors for immune cell analysis—A perspective
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4706845
10.1063/1.4706845
SEARCH_EXPAND_ITEM