1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Uniform yeast cell assembly via microfluidics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.4714221
1.
1. R. F. Fakhrullin, M. L. Brandy, O. J. Cayre, O. D. Velev, and V. N. Paunov, Phys. Chem. Chem. Phys. 12(38), 1191211922 (2010).
http://dx.doi.org/10.1039/c0cp00131g
2.
2. M. L. Brandy, O. J. Cayre, R. F. Fakhrullin, O. D. Velev, and V. N. Paunov, Soft Matter 6(15), 34943498 (2010).
http://dx.doi.org/10.1039/c0sm00003e
3.
3. R. E. Michod, Y. Viossat, C. A. Solari, M. Hurand, and A. M. Nedelcu, J. Theor. Biol. 239(2), 257272 (2006).
http://dx.doi.org/10.1016/j.jtbi.2005.08.043
4.
4. K. Vleminckx, in eLS (Wiley, 2001).
5.
5. A. Hallmann, in International Review of Cytology (Academic Press, 2003), Vol. 227, pp. 131182.
6.
6. A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, and D. A. Weitz, Science 298(5595), 10061009 (2002).
http://dx.doi.org/10.1126/science.1074868
7.
7. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, Proc. Natl. Acad. Sci. USA 103(8), 24802487 (2006).
http://dx.doi.org/10.1073/pnas.0507681102
8.
8. B. V. Slaughter, S. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Adv. Mater. 21(32-33), 33073329 (2009).
http://dx.doi.org/10.1002/adma.200802106
9.
9. G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films 210(1-2), 831835 (1992).
http://dx.doi.org/10.1016/0040-6090(92)90417-A
10.
10. G. Decher, Science 277(5330), 12321237 (1997).
http://dx.doi.org/10.1126/science.277.5330.1232
11.
11. G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, A. Budde, and H. Mohwald, Colloid Surf. A 137(1-3), 253266 (1998).
http://dx.doi.org/10.1016/S0927-7757(98)00213-1
12.
12. A. I. Zamaleeva, I. R. Sharipova, A. V. Porfireva, G. A. Evtugyn, and R. F. Fakhrullin, Langmuir 26(4), 26712679 (2010).
http://dx.doi.org/10.1021/la902937s
13.
13. A. Diaspro, D. Silvano, S. Krol, O. Cavalleri, and A. Gliozzi, Langmuir 18(13), 50475050 (2002).
http://dx.doi.org/10.1021/la025646e
14.
14. S. Mansouri, Y. Merhi, F. M. Winnik, and M. Tabrizian, Biomacromolecules 12 (3), 585592 (2011).
http://dx.doi.org/10.1021/bm101200c
15.
15. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.-C. Voegel, and C. Picart, Biomacromolecules 5(2), 284294 (2003).
http://dx.doi.org/10.1021/bm0342281
16.
16. M. T. Thompson, M. C. Berg, I. S. Tobias, M. F. Rubner, and K. J. Van Vliet, Biomaterials 26(34), 68366845 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.05.003
17.
17. G. M. Whitesides, Nature 442(7101), 368373 (2006).
http://dx.doi.org/10.1038/nature05058
18.
18. H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381411 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
19.
19. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Lab Chip 8(2), 198220 (2008).
http://dx.doi.org/10.1039/b715524g
20.
20. S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett. 82(3), 364366 (2003).
http://dx.doi.org/10.1063/1.1537519
21.
21. P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, Lab Chip 6(3), 437446 (2006).
http://dx.doi.org/10.1039/b510841a
22.
22. W. H. Tan and S. Takeuchi, Adv. Mater. 19(18), 26962701 (2007).
http://dx.doi.org/10.1002/adma.200700433
23.
23. D. Dendukuri and P. S. Doyle, Adv. Mater. 21(41), 40714086 (2009).
http://dx.doi.org/10.1002/adma.200803386
24.
24. J. W. Kim, A. Fernandez-Nieves, N. Dan, A. S. Utada, M. Marquez, and D. A. Weitz, Nano Lett. 7(9), 28762880 (2007).
http://dx.doi.org/10.1021/nl0715948
25.
25. R. K. Shah, J.-W. Kim, and D. A. Weitz, Langmuir 26(3), 15611565 (2009).
http://dx.doi.org/10.1021/la9041327
26.
26. A. B. Subramaniam, M. Abkarian, and H. A. Stone, Nature Mater. 4(7), 553556 (2005).
http://dx.doi.org/10.1038/nmat1412
27.
27. D. W. Luo, S. R. Pullela, M. Marquez, and Z. D. Cheng, Biomicrofluidics 1(3), 034102 (2007).
http://dx.doi.org/10.1063/1.2757156
28.
28. V. Tohver, J. E. Smay, A. Braem, P. V. Braun, and J. A. Lewis, Proc. Natl. Acad. Sci. USA 98(16), 89508954 (2001).
http://dx.doi.org/10.1073/pnas.151063098
29.
29. F. Zhang, G. G. Long, P. R. Jemian, J. Ilavsky, V. T. Milam, and J. A. Lewis, Langmuir 24(13), 65046508 (2008).
http://dx.doi.org/10.1021/la702968n
30.
30. Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. 37(5), 550575 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
31.
31. M. De Menech, P. Garstecki, F. Jousse, and H. A. Stone, J. Fluid Mech. 595, 141161 (2008).
http://dx.doi.org/10.1017/S002211200700910X
32.
32. M. Semmler, E. K. Mann, J. Ricka, and M. Borkovec, Langmuir 14(18), 51275132 (1998).
http://dx.doi.org/10.1021/la9801559
33.
33. L. K. Koopal and M. J. Avena, Colloid Surf. A 192(1-3), 93107 (2001).
http://dx.doi.org/10.1016/S0927-7757(01)00719-1
34.
34. R. S. Schechter, A. Graciaa, and J. Lachaise, J. Colloid Interface Sci. 204(2), 398399 (1998).
http://dx.doi.org/10.1006/jcis.1998.5548
35.
35. C. Yang, T. Dabros, D. Q. Li, J. Czarnecki, and J. H. Masliyah, J. Colloid Interface Sci. 243(1), 128135 (2001).
http://dx.doi.org/10.1006/jcis.2001.7842
36.
36. J. I. Park, Z. Nie, A. Kumachev, A. I. Abdelrahman, B. R. Binks, H. A. Stone, and E. Kumacheva, Angew. Chem. Int. Ed. 48(29), 53005304 (2009).
http://dx.doi.org/10.1002/anie.200805204
37.
37. J. I. Park, Z. H. Nie, A. Kumachev, and E. Kumacheva, Soft Matter 6(3), 630634 (2010).
http://dx.doi.org/10.1039/b914572a
38.
38. R. H. Perry and D. W. Green, Perry’s Chemical Engineers’ Handbook, 7th ed. (McGraw-Hill, 1997).
39.
39. P. Garstecki, I. Gitlin, W. DiLuzio, G. M. Whitesides, E. Kumacheva, and H. A. Stone, Appl. Phys. Lett. 85(13), 26492651 (2004).
http://dx.doi.org/10.1063/1.1796526
40.
40. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, Biophotonics Int. 11(7), 3642 (2004).
http://dx.doi.org/10.1021/la9041327
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4714221
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Microfluidic fabrication of agarose microgel and gas bubble templates. (a) (Upper) Schematic of flow focusing microfluidic device. (Lower) Microscopy image of agarose droplet breakup captured with fast camera. (b) (Upper) Uniform microgel particles in water. (Lower) Size distribution of microgel particles. (c) T-junction microfluidic device. (Right insert) Microscopy images of bubble pinch-off assisted by pillar close to the junction. Scale bar: 100 microns.

Image of FIG. 2.

Click to view

FIG. 2.

Uniform monolayer yeastosomes templated on agarose hydrogel particles. (a) Schematic of polyelectrolyte and yeast cell layer assembly procedure. (b) Microscopy image of uniformly coated yeastosome focused on lower (left) and middle (right) plane.

Image of FIG. 3.

Click to view

FIG. 3.

Time evolution of surface coverage. (a) After 20-min incubation. (b) After overnight incubation.

Image of FIG. 4.

Click to view

FIG. 4.

Bright field (a) and confocal laser scanning microscopy (b) image of FDA-stained microgel yeastosomes, demonstrating high cell viability after assembly. (c) SEM image of dried microgel yeastosomes.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Microscopy image of bubbles taken at varying positions in the microchannel. Approximate distances from the orifice are around 6.8, 19, 26, 42, and 125 mm (from top to bottom, increasing residence time inside the device). (b) Gas-templated yeastosomes collected at channel outlet. Scale bars: 100 µm.

Tables

Generic image for table

Click to view

Table I.

Particle size determined by fluid flow rates.

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.4714221
2012-05-08
2014-04-17

Abstract

This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.4714221.html;jsessionid=1tvq832sm0hol.x-aip-live-06?itemId=/content/aip/journal/bmf/6/2/10.1063/1.4714221&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Uniform yeast cell assembly via microfluidics
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4714221
10.1063/1.4714221
SEARCH_EXPAND_ITEM