AIP Publishing manuscript submission and processing system (PXP) is currently unavailable to users in China. We are working to resolve the issue as quickly as possible. We apologize for the inconvenience.

尊敬的中国作者和评审人:AIP Publishing (AIP出版公司)的论文发布系统(PXP)目前遇到一些技术问题。我们将为您尽快解决。因此带来的不便,我们向您表达我们诚挚的歉意!

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave
Rent this article for
Access full text Article
1. S. M. Dang, M. Kyba, R. Perlingeiro, G. Q. Daley, and P. W. Zandstra, Biotechnol. Bioeng. 78, 442 (2002).
2. L. G. Griffith and M. A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211 (2006).
3. T. Konno, K. Akita, K. Kurita, and Y. J. Ito, Biosci. Bioeng. 100, 88 (2005).
4. C. Kim, S. Chung, Y. E. Kim, K. S. Lee, S. H. Lee, K. W. Oh, and J. Y. Kang, Lab Chip 11, 246 (2011).
5. C. Kim, K. S. Lee, Y. E. Kim, K. J. Lee, S. H. Lee, T. S. Kim, and J. Y. Kang, Lab Chip 9, 1294 (2009).
6. W. H. Tan and S. Takeuchi, Adv. Mater. 19, 2696 (2007).
7. G. M. Cruise, D. S. Scharp, and J. A. Hubbell, Biomaterials 19, 1287 (1998).
8. L. M. Weber, K. N. Hayda, K. Haskins, and K. S. Anseth, Biomaterials 28, 3004 (2007).
9. L. M. Weber, J. He, B. Bradley, K. Haskins, and K. S. Anseth, Acta Biomater. 2, 1 (2006).
10. K. H. Bae, J. J. Yoon, and T. G. Park, Biotechnol. Prog. 22, 297 (2006).
11. C. Chung, J. Mesa, G. J. Miller, M. A. Randolph, T. J. Gill, and J. A. Burdick, Tissue Eng. 12, 2665 (2006).
12. A. Khademhosseini, G. Eng, J. Yeh, J. Fukuda, J. Blumling III, R. Langer, and J. A. Burdick, J. Biomed. Mater. Res. Part A, 79, 522 (2006).
13. S. Gerecht, S. A. Townsend, H. Pressler, H. Zhu, C. L. E. Nijst, J. P. Bruggeman, J. W. Nichol, and R. Langer, Biomaterials 28, 4826 (2007).
14. A. Hoshikawa, Y. Nakayama, T. Matsuda, H. Oda, K. Nakamura, and K. Mabuchi, Tissue Eng. 12, 2333 (2006).
15. G. D. Nicodemus and S. J. Bryant, Tissue Eng. 14, 149 (2008).
16. M. S. Shoichet, R. H. Li, M. L. White, and S. R. Winn, Biotechnol. Bioeng. 50, 374 (1996).<374::AID-BIT4>3.0.CO;2-I
17. M. C. W. Chen, M. Gupta, and K. C. Cheung, Biomed. Microdevices 12, 647 (2010).
18. C. Kim, K. S. Lee, J. H. Bang, Y. E. Kim, M. C. Kim, K. W. Oh, S. H. Lee, and J. Y. Kang, Lab Chip 11, 874 (2011).
19. S. F. Lan, B. Safiejko-Mroczka, and B. Starly, Toxicol. in Vitro 24, 1314 (2010).
20. R. Gonzalez McQuire, D. W. Green, K. Partridge, R. O. C. Oreffo, S. Mann, and S. A. Davis, Adv. Mater. 19, 2236 (2007).
21. D. Wendt, S. A. Riboldi, M. Cioffi, and I. Martin, Adv. Mater. 21, 3352 (2009).
22. H. A. Declercq, T. L. Gorski, S. P. Tielens, E. H. Schacht, and M. J. Cornelissen, Biomacromolecules 6, 1608 (2005).
23. D. Hoffman, X. O. Breakefield, M. P. Short, and P. Aebischer, Exp. Neurol. 122, 100 (1993).
24. S. Shao, Y. Gao, B. Xie, F. Xie, S. K. Lim, and G. D. J. Li, Endocrinology 208, 245 (2011).
25. C. Norotte, F. S. Marga, L. E. Niklason, and G. Forgacs, Biomaterials 30, 5910 (2009).
26. A. Murua, A. Portero, G. Orive, R. M. Hernandez, M. De Castro, and J. L. J. Pedraz, J. Controlled Release 132, 76 (2008).
27. G. Orive, R. M. Hernandez, A. R. Gascon, R. Calafiore, T. M. S. Chang, P. De Vos, D. Hortelano, G. Hunkeler, I. Lacik, and A. M. Shapiro, J. Nat. Med. 9, 104 (2003).
28. C. L. Bauwens, R. Peerani, S. Niebruegge, K. A. Woodhouse, E. Kumacheva, M. Husain, and P. W. Zandstra, Stem Cells 26, 2300 (2008).
29. F. H. Gage, Nature 392, 18 (1998).
30. J. Malda and C. G. Frondoza, Trends Biotechnol. 24, 299 (2006).
31. P. R. Rogers, J. R. Friend, and L. Y. Yeo, Lab Chip 10, 2979 (2010).
32. M. Chabert and J. L. Viovy, Proc. Natl. Acad. Sci. U.S.A. 105, 3191 (2008).
33. C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee, Biomed. Microdevices 9, 855 (2007).
34. S. Koster, F. E. Angile, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, and A. D. Griffiths, Lab Chip 8, 1110 (2008).
35. D. Chicheportiche and G. Reach, Diabetologia 31, 54 (1988).
36. S. Sakai, C. Mu, K. Kawabata, I. Hashimoto, and K. Kawakami, J. Biomed. Mater. Res. Part A 78, 394 (2006).
37. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, Lab Chip 4, 292 (2004).
38. Y. C. Tan, Y. L. Ho and A. P. Lee, Microfluid. Nanofluid. 4, 343 (2008).
39. C. H. Yang, Y. S. Lin, K. S. Huang, Y. C. Huang, E. C. Wang, J. Y. Jhong, and C. Y. Kuo, Lab Chip 9, 145 (2009).
40. H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, Langmuir 24, 4405 (2008).
41. Y. C. Tan and A. P. Lee, Lab Chip 5, 1178 (2005).
42. S. H. Hung, Y. H. Lin, and G. B. Lee, J. Micromech. Microeng. 20, 045026 (2010).
43. B. Ahn, K. Lee, R. Louge, and K. W. Oh, Biomicrofluidics 3, 044102 (2009).
44. K. Ahn, J. Agresti, H. Chong, M. Marquez, and D. Weitz, Appl. Phys. Lett. 88, 264105 (2006).
45. L. M. Fidalgo, G. Whyte, D. Bratton, C. F. Kaminski, C. Abell, and W. T. S. Huck, Angew. Chem. 120, 2072 (2008).
46. F. Guo, X. H. Ji, K. Liu, R. X. He, L. B. Zhao, Z. X. Guo, W. Liu, S. S. Guo, and X. Z. Zhao, Appl. Phys. Lett. 96, 193701 (2010).
47. C. Y. Lee, Y. H. Lin, and G. B. Lee, Microfluid. Nanofluid. 6, 599 (2009).
48. D. Wakui, S. Takahashi, T. Sekiguchi, and S. Shoji, in 2010 IEEE 23rd International Conference Micro Electro Mechanical Systems (MEMS) (IEEE, Wanchai, Hong Kong, 2010), pp. 144147.
49. T. Franke, A. R. Abate, D. A. Weitz, and A. Wixforth, Lab Chip 9, 2625 (2009).
50. J. Nam, Y. Lee, and S. Shin, Microfluid. Nanofluid. 11, 317 (2011).
51. J. Shemesh, A. Bransky, M. Khoury, and S. Levenberg, Biomed. Microdevices 12, 907 (2010).
52. J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, Lab Chip 9, 3354 (2009).
53. N. D. Orloff, J. R. Dennis, M Cecchini, Et. Schonbrun, E. Rocas, Y. Wang, D. Novotny, R. W. Simmonds, J. Moreland, I. Takeuchi, and J. C. Booth, Biomicrofluidics 5, 044107 (2011).
54. L. Meng, F. Cai, Z. Zhang, L. Niu, Q. Jin, F. Yan, J. Wu, Z. Wang, and H. Zheng, Biomicrofluidics 5, 044104 (2011)
55. J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, Lab Chip 9, 2890 (2009).
56. L. Y. Yeo and J. R. Friend, Biomicrofluidics 3, 012002 (2009).
57. J. Nam, H. Lim, D. Kim, and S. Shin, Lab Chip 11, 3361 (2011).
58. H. Li, J. Friend, L. Yeo, A. Dasvarma, and K. Traianedes, Biomicrofluidics 3, 034102 (2009).
59. K. Yosioka and Y. Kawasima, Acustica 5, 167 (1955).
60. S. M. Dang, S. Gerecht Nir, J. Chen, J. Itskovitz Eldor, and P. W. Zandstra, Stem Cells 22, 275 (2004).
61. C. Cameron, W. S. Hu, and D. S. Kaufman, Biotechnol. Bioeng. 94, 938 (2006).
62. A. Khademhosseini, L. Ferreira, J. Blumling III, J. Yeh, J. M. Karp, J. Fukuda, and R. Langer, Biomaterials 27, 5968 (2006).
63. J. M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling III, K. Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, and A. Khademhosseini, Lab Chip 7, 786 (2007).
64. Y. Torisawa, B. Chueh, D. Huh, P. Ramamurthy, T. M. Roth, K. F. Barald, and S. Takayama, Lab Chip 7, 770 (2007).
65. Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseini, Proc. Natl. Acad. Sci. U.S.A. 106, 16978 (2009).

Data & Media loading...


Article metrics loading...



This study presents a method for density-based separation of monodisperse encapsulated cells using a standing surface acoustic wave (SSAW) in a microchannel. Even though monodisperse polymer beads can be generated by the state-of-the-art technology in microfluidics, the quantity of encapsulated cells cannot be controlled precisely. In the present study, mono-disperse alginate beads in a laminar flow can be separated based on their density using acoustophoresis. A mixture of beads of equal sizes but dissimilar densities was hydrodynamically focused at the entrance and then actively driven toward the sidewalls by a SSAW. The lateral displacement of a bead is proportional to the density of the bead, i.e., the number of encapsulated cells in an alginate bead. Under optimized conditions, the recovery rate of a target bead group (large-cell-quantity alginate beads) reached up to 97% at a rate of 2300 beads per minute. A cell viability test also confirmed that the encapsulated cells were hardly damaged by the acoustic force. Moreover, cell-encapsulating beads that were cultured for 1 day were separated in a similar manner. In conclusion, this study demonstrated that a SSAW can successfully separate monodisperse particles by their density. With the present technique for separating cell-encapsulating beads, the current cell engineering technology can be significantly advanced.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave