1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.4718719
1.
1. S. M. Dang, M. Kyba, R. Perlingeiro, G. Q. Daley, and P. W. Zandstra, Biotechnol. Bioeng. 78, 442 (2002).
http://dx.doi.org/10.1002/bit.10220
2.
2. L. G. Griffith and M. A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211 (2006).
http://dx.doi.org/10.1038/nrm1858
3.
3. T. Konno, K. Akita, K. Kurita, and Y. J. Ito, Biosci. Bioeng. 100, 88 (2005).
http://dx.doi.org/10.1263/jbb.100.88
4.
4. C. Kim, S. Chung, Y. E. Kim, K. S. Lee, S. H. Lee, K. W. Oh, and J. Y. Kang, Lab Chip 11, 246 (2011).
http://dx.doi.org/10.1039/c0lc00036a
5.
5. C. Kim, K. S. Lee, Y. E. Kim, K. J. Lee, S. H. Lee, T. S. Kim, and J. Y. Kang, Lab Chip 9, 1294 (2009).
http://dx.doi.org/10.1039/b819044e
6.
6. W. H. Tan and S. Takeuchi, Adv. Mater. 19, 2696 (2007).
http://dx.doi.org/10.1002/adma.200700433
7.
7. G. M. Cruise, D. S. Scharp, and J. A. Hubbell, Biomaterials 19, 1287 (1998).
http://dx.doi.org/10.1016/S0142-9612(98)00025-8
8.
8. L. M. Weber, K. N. Hayda, K. Haskins, and K. S. Anseth, Biomaterials 28, 3004 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.03.005
9.
9. L. M. Weber, J. He, B. Bradley, K. Haskins, and K. S. Anseth, Acta Biomater. 2, 1 (2006).
http://dx.doi.org/10.1016/j.actbio.2005.10.005
10.
10. K. H. Bae, J. J. Yoon, and T. G. Park, Biotechnol. Prog. 22, 297 (2006).
http://dx.doi.org/10.1021/bp050312b
11.
11. C. Chung, J. Mesa, G. J. Miller, M. A. Randolph, T. J. Gill, and J. A. Burdick, Tissue Eng. 12, 2665 (2006).
http://dx.doi.org/10.1089/ten.2006.12.2665
12.
12. A. Khademhosseini, G. Eng, J. Yeh, J. Fukuda, J. Blumling III, R. Langer, and J. A. Burdick, J. Biomed. Mater. Res. Part A, 79, 522 (2006).
http://dx.doi.org/10.1002/jbm.a.30821
13.
13. S. Gerecht, S. A. Townsend, H. Pressler, H. Zhu, C. L. E. Nijst, J. P. Bruggeman, J. W. Nichol, and R. Langer, Biomaterials 28, 4826 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2007.07.039
14.
14. A. Hoshikawa, Y. Nakayama, T. Matsuda, H. Oda, K. Nakamura, and K. Mabuchi, Tissue Eng. 12, 2333 (2006).
http://dx.doi.org/10.1089/ten.2006.12.2333
15.
15. G. D. Nicodemus and S. J. Bryant, Tissue Eng. 14, 149 (2008).
16.
16. M. S. Shoichet, R. H. Li, M. L. White, and S. R. Winn, Biotechnol. Bioeng. 50, 374 (1996).
http://dx.doi.org/10.1002/(SICI)1097-0290(19960520)50:4<374::AID-BIT4>3.0.CO;2-I
17.
17. M. C. W. Chen, M. Gupta, and K. C. Cheung, Biomed. Microdevices 12, 647 (2010).
http://dx.doi.org/10.1007/s10544-010-9417-2
18.
18. C. Kim, K. S. Lee, J. H. Bang, Y. E. Kim, M. C. Kim, K. W. Oh, S. H. Lee, and J. Y. Kang, Lab Chip 11, 874 (2011).
http://dx.doi.org/10.1039/c0lc00516a
19.
19. S. F. Lan, B. Safiejko-Mroczka, and B. Starly, Toxicol. in Vitro 24, 1314 (2010).
http://dx.doi.org/10.1016/j.tiv.2010.02.015
20.
20. R. Gonzalez McQuire, D. W. Green, K. Partridge, R. O. C. Oreffo, S. Mann, and S. A. Davis, Adv. Mater. 19, 2236 (2007).
http://dx.doi.org/10.1002/adma.200602770
21.
21. D. Wendt, S. A. Riboldi, M. Cioffi, and I. Martin, Adv. Mater. 21, 3352 (2009).
http://dx.doi.org/10.1002/adma.200802748
22.
22. H. A. Declercq, T. L. Gorski, S. P. Tielens, E. H. Schacht, and M. J. Cornelissen, Biomacromolecules 6, 1608 (2005).
http://dx.doi.org/10.1021/bm050031s
23.
23. D. Hoffman, X. O. Breakefield, M. P. Short, and P. Aebischer, Exp. Neurol. 122, 100 (1993).
http://dx.doi.org/10.1006/exnr.1993.1111
24.
24. S. Shao, Y. Gao, B. Xie, F. Xie, S. K. Lim, and G. D. J. Li, Endocrinology 208, 245 (2011).
25.
25. C. Norotte, F. S. Marga, L. E. Niklason, and G. Forgacs, Biomaterials 30, 5910 (2009).
http://dx.doi.org/10.1016/j.biomaterials.2009.06.034
26.
26. A. Murua, A. Portero, G. Orive, R. M. Hernandez, M. De Castro, and J. L. J. Pedraz, J. Controlled Release 132, 76 (2008).
http://dx.doi.org/10.1016/j.jconrel.2008.08.010
27.
27. G. Orive, R. M. Hernandez, A. R. Gascon, R. Calafiore, T. M. S. Chang, P. De Vos, D. Hortelano, G. Hunkeler, I. Lacik, and A. M. Shapiro, J. Nat. Med. 9, 104 (2003).
http://dx.doi.org/10.1038/nm0103-104
28.
28. C. L. Bauwens, R. Peerani, S. Niebruegge, K. A. Woodhouse, E. Kumacheva, M. Husain, and P. W. Zandstra, Stem Cells 26, 2300 (2008).
http://dx.doi.org/10.1634/stemcells.2008-0183
29.
29. F. H. Gage, Nature 392, 18 (1998).
30.
30. J. Malda and C. G. Frondoza, Trends Biotechnol. 24, 299 (2006).
http://dx.doi.org/10.1016/j.tibtech.2006.04.009
31.
31. P. R. Rogers, J. R. Friend, and L. Y. Yeo, Lab Chip 10, 2979 (2010).
http://dx.doi.org/10.1039/c004822d
32.
32. M. Chabert and J. L. Viovy, Proc. Natl. Acad. Sci. U.S.A. 105, 3191 (2008).
http://dx.doi.org/10.1073/pnas.0708321105
33.
33. C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee, Biomed. Microdevices 9, 855 (2007).
http://dx.doi.org/10.1007/s10544-007-9098-7
34.
34. S. Koster, F. E. Angile, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, and A. D. Griffiths, Lab Chip 8, 1110 (2008).
http://dx.doi.org/10.1039/b802941e
35.
35. D. Chicheportiche and G. Reach, Diabetologia 31, 54 (1988).
36.
36. S. Sakai, C. Mu, K. Kawabata, I. Hashimoto, and K. Kawakami, J. Biomed. Mater. Res. Part A 78, 394 (2006).
http://dx.doi.org/10.1002/jbm.a.30676
37.
37. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, Lab Chip 4, 292 (2004).
http://dx.doi.org/10.1039/b403280m
38.
38. Y. C. Tan, Y. L. Ho and A. P. Lee, Microfluid. Nanofluid. 4, 343 (2008).
http://dx.doi.org/10.1007/s10404-007-0184-1
39.
39. C. H. Yang, Y. S. Lin, K. S. Huang, Y. C. Huang, E. C. Wang, J. Y. Jhong, and C. Y. Kuo, Lab Chip 9, 145 (2009).
http://dx.doi.org/10.1039/b807454b
40.
40. H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, Langmuir 24, 4405 (2008).
http://dx.doi.org/10.1021/la703581j
41.
41. Y. C. Tan and A. P. Lee, Lab Chip 5, 1178 (2005).
http://dx.doi.org/10.1039/b504497a
42.
42. S. H. Hung, Y. H. Lin, and G. B. Lee, J. Micromech. Microeng. 20, 045026 (2010).
http://dx.doi.org/10.1088/0960-1317/20/4/045026
43.
43. B. Ahn, K. Lee, R. Louge, and K. W. Oh, Biomicrofluidics 3, 044102 (2009).
http://dx.doi.org/10.1063/1.3250303
44.
44. K. Ahn, J. Agresti, H. Chong, M. Marquez, and D. Weitz, Appl. Phys. Lett. 88, 264105 (2006).
http://dx.doi.org/10.1063/1.2218058
45.
45. L. M. Fidalgo, G. Whyte, D. Bratton, C. F. Kaminski, C. Abell, and W. T. S. Huck, Angew. Chem. 120, 2072 (2008).
http://dx.doi.org/10.1002/ange.200704903
46.
46. F. Guo, X. H. Ji, K. Liu, R. X. He, L. B. Zhao, Z. X. Guo, W. Liu, S. S. Guo, and X. Z. Zhao, Appl. Phys. Lett. 96, 193701 (2010).
http://dx.doi.org/10.1063/1.3360812
47.
47. C. Y. Lee, Y. H. Lin, and G. B. Lee, Microfluid. Nanofluid. 6, 599 (2009).
http://dx.doi.org/10.1007/s10404-008-0340-2
48.
48. D. Wakui, S. Takahashi, T. Sekiguchi, and S. Shoji, in 2010 IEEE 23rd International Conference Micro Electro Mechanical Systems (MEMS) (IEEE, Wanchai, Hong Kong, 2010), pp. 144147.
49.
49. T. Franke, A. R. Abate, D. A. Weitz, and A. Wixforth, Lab Chip 9, 2625 (2009).
http://dx.doi.org/10.1039/b906819h
50.
50. J. Nam, Y. Lee, and S. Shin, Microfluid. Nanofluid. 11, 317 (2011).
http://dx.doi.org/10.1007/s10404-011-0798-1
51.
51. J. Shemesh, A. Bransky, M. Khoury, and S. Levenberg, Biomed. Microdevices 12, 907 (2010).
http://dx.doi.org/10.1007/s10544-010-9445-y
52.
52. J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, Lab Chip 9, 3354 (2009).
http://dx.doi.org/10.1039/b915113c
53.
53. N. D. Orloff, J. R. Dennis, M Cecchini, Et. Schonbrun, E. Rocas, Y. Wang, D. Novotny, R. W. Simmonds, J. Moreland, I. Takeuchi, and J. C. Booth, Biomicrofluidics 5, 044107 (2011).
http://dx.doi.org/10.1063/1.3661129
54.
54. L. Meng, F. Cai, Z. Zhang, L. Niu, Q. Jin, F. Yan, J. Wu, Z. Wang, and H. Zheng, Biomicrofluidics 5, 044104 (2011)
http://dx.doi.org/10.1063/1.3652872
55.
55. J. Shi, D. Ahmed, X. Mao, S. C. S. Lin, A. Lawit, and T. J. Huang, Lab Chip 9, 2890 (2009).
http://dx.doi.org/10.1039/b910595f
56.
56. L. Y. Yeo and J. R. Friend, Biomicrofluidics 3, 012002 (2009).
http://dx.doi.org/10.1063/1.3056040
57.
57. J. Nam, H. Lim, D. Kim, and S. Shin, Lab Chip 11, 3361 (2011).
http://dx.doi.org/10.1039/c1lc20346k
58.
58. H. Li, J. Friend, L. Yeo, A. Dasvarma, and K. Traianedes, Biomicrofluidics 3, 034102 (2009).
http://dx.doi.org/10.1063/1.3194282
59.
59. K. Yosioka and Y. Kawasima, Acustica 5, 167 (1955).
60.
60. S. M. Dang, S. Gerecht Nir, J. Chen, J. Itskovitz Eldor, and P. W. Zandstra, Stem Cells 22, 275 (2004).
http://dx.doi.org/10.1634/stemcells.22-3-275
61.
61. C. Cameron, W. S. Hu, and D. S. Kaufman, Biotechnol. Bioeng. 94, 938 (2006).
http://dx.doi.org/10.1002/bit.20919
62.
62. A. Khademhosseini, L. Ferreira, J. Blumling III, J. Yeh, J. M. Karp, J. Fukuda, and R. Langer, Biomaterials 27, 5968 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2006.06.035
63.
63. J. M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling III, K. Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, and A. Khademhosseini, Lab Chip 7, 786 (2007).
http://dx.doi.org/10.1039/b705085m
64.
64. Y. Torisawa, B. Chueh, D. Huh, P. Ramamurthy, T. M. Roth, K. F. Barald, and S. Takayama, Lab Chip 7, 770 (2007).
http://dx.doi.org/10.1039/b618439a
65.
65. Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseini, Proc. Natl. Acad. Sci. U.S.A. 106, 16978 (2009).
http://dx.doi.org/10.1073/pnas.0905550106
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4718719
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic illustration of the working principle of the SSAW for density-based alginate bead separation. (b) Photograph of the device consisting of a PDMS microchannel and patterned IDTs on a piezoelectric LiNbO3 wafer.

Image of FIG. 2.

Click to view

FIG. 2.

Normalized displacements of alginate beads as a function of applied voltage for different cell quantities.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Recovery rate of alginate beads with large quantities of cells from the collection outlet and the waste outlet. (b) Captured images of the divided channel separating alginate beads based on cell quantity at 12 V.

Image of FIG. 4.

Click to view

FIG. 4.

Normalized displacement of cultured beads as a function of the applied voltage for different cultured cell quantities.

Image of FIG. 5.

Click to view

FIG. 5.

Cell viability in beads separated under different applied voltages in 1 day. The p-value was calculated using the unpaired two-tailed Student’s t-test to determine whether the differences between the 0 V reference sample and the sample collected under high voltage conditions were significant (*p > 0.05; **p = 0.015).

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.4718719
2012-05-16
2014-04-19

Abstract

This study presents a method for density-based separation of monodisperse encapsulated cells using a standing surface acoustic wave (SSAW) in a microchannel. Even though monodisperse polymer beads can be generated by the state-of-the-art technology in microfluidics, the quantity of encapsulated cells cannot be controlled precisely. In the present study, mono-disperse alginate beads in a laminar flow can be separated based on their density using acoustophoresis. A mixture of beads of equal sizes but dissimilar densities was hydrodynamically focused at the entrance and then actively driven toward the sidewalls by a SSAW. The lateral displacement of a bead is proportional to the density of the bead, i.e., the number of encapsulated cells in an alginate bead. Under optimized conditions, the recovery rate of a target bead group (large-cell-quantity alginate beads) reached up to 97% at a rate of 2300 beads per minute. A cell viability test also confirmed that the encapsulated cells were hardly damaged by the acoustic force. Moreover, cell-encapsulating beads that were cultured for 1 day were separated in a similar manner. In conclusion, this study demonstrated that a SSAW can successfully separate monodisperse particles by their density. With the present technique for separating cell-encapsulating beads, the current cell engineering technology can be significantly advanced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.4718719.html;jsessionid=37ebuepebs8ci.x-aip-live-03?itemId=/content/aip/journal/bmf/6/2/10.1063/1.4718719&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4718719
10.1063/1.4718719
SEARCH_EXPAND_ITEM