1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.4718721
1.
1. A. Luster, R. Alon, and U. von Andrian, Nat. Immunol. 6, 1182 (2005).
http://dx.doi.org/10.1038/ni1275
2.
2. A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M. E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S. N. Wagner, J. L. Barrera, A. Mohar, E. Verastegui, and A. Zlotnik, Nature 410, 50 (2001).
http://dx.doi.org/10.1038/35065016
3.
3. M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Y. Gu, T. Sasaki, A. Suzuki, J. Forrester, H. Bourne, P. Devreotes, C. McCaig, and J. Penninger, Nature 442, 457 (2006).
http://dx.doi.org/10.1038/nature04925
4.
4. T. Behar, A. Schaffner, C. Colton, R. Somogyi, Z. Olah, C. Lehel, and J. Barker, J. Neurosci. 14, 29 (1994).
5.
5. J. Campbell and E. Butcher, Curr. Opin. Immunol. 12, 336 (2000).
http://dx.doi.org/10.1016/S0952-7915(00)00096-0
6.
6. P. Kubes, Semin. Immunol. 14, 65 (2002).
http://dx.doi.org/10.1006/smim.2001.0343
7.
7. E. Kunkel and E. Butcher, Immunity 16, 1 (2002).
http://dx.doi.org/10.1016/S1074-7613(01)00261-8
8.
8. E. C. Butcher and L. J. Picker, Science 272, 60 (1996).
http://dx.doi.org/10.1126/science.272.5258.60
9.
9. S. Menon and K. A. Beningo, PLoS ONE 6, e17277 (2011).
http://dx.doi.org/10.1371/journal.pone.0017277
10.
10. B. Song, Y. Gu, J. Pu, B. Reid, Z. Zhao, and M. Zhao, Nat. Protoc. 2, 1479 (2007).
http://dx.doi.org/10.1038/nprot.2007.205
11.
11. J. Li, S. Nandagopal, D. Wu, S. F. Romanuik, K. Paul, D. J. Thomson, and F. Lin, Lab Chip 11, 1298 (2011).
http://dx.doi.org/10.1039/c0lc00371a
12.
12. F. Lin, F. Baldessari, C. Gyenge, T. Sato, R. Chambers, J. Santiago, and E. Butcher, J. Immunol. 181, 2465 (2008).
13.
13. R. B. Frankel and R. P. Blakemore, Bioelectromagnetics 10, 223 (1989).
http://dx.doi.org/10.1002/bem.2250100303
14.
14. C. McCaig, A. Rajnicek, B. Song, and M. Zhao, Physiol. Rev. 85, 943 (2005).
http://dx.doi.org/10.1152/physrev.00020.2004
15.
15. C. Huang, J. Cheng, M. Yen, and T. Young, Biosens. Bioelectron. 24, 3510 (2009).
http://dx.doi.org/10.1016/j.bios.2009.05.001
16.
16. J. Zhang, M. Calafiore, Q. Zeng, X. Zhang, Y. Huang, R. Li, W. Deng, and M. Zhao, Stem Cell Rev. Rep. 7, 987 (2011).
http://dx.doi.org/10.1007/s12015-011-9247-5
17.
17. M. Sato, H. Kuwayama, W. van Egmond, A. Takayama, H. Takagi, P. van Haastert, T. Yanagida, and M. Ueda, Proc. Natl. Acad. Sci. U.S.A. 106, 6667 (2009).
http://dx.doi.org/10.1073/pnas.0809974106
18.
18. M. J. Sato, M. Ueda, H. Takagi, T. M. Watanabe, and T. Yanagida, Biosystems 88, 261 (2007).
http://dx.doi.org/10.1016/j.biosystems.2006.06.008
19.
19. M. B. A. Djamgoz, M. Mycielska, Z. Madeja, S. Fraser, and W. Korohoda, J. Cell Sci. 114, 2697 (2001).
20.
20. M. Zhao, Semin. Cell Dev. Biol. 20, 674 (2009).
http://dx.doi.org/10.1016/j.semcdb.2008.12.009
21.
21. J. Li and F. Lin, Trends in Cell Biol. 21, 489 (2011).
http://dx.doi.org/10.1016/j.tcb.2011.05.002
22.
22. R. D. Nelson, P. G. Quie, and R. L. Simmons, J. Immunol. 115, 1650 (1975).
23.
23. S. Boyden, J. Exp. Med. 115, 453 (1962).
http://dx.doi.org/10.1084/jem.115.3.453
24.
24. A. Lohof, M. Quillan, Y. Dan, and M. Poo, J. Neurosci. 12, 1253 (1992).
25.
25. S. Zigmond, J. Cell Biol. 75, 606 (1977).
http://dx.doi.org/10.1083/jcb.75.2.606
26.
26. E. F. Foxman, J. J. Campbell, and E. C. Butcher, J. Cell Biol. 139, 1349 (1997).
http://dx.doi.org/10.1083/jcb.139.5.1349
27.
27. K. E. Hammerick, M. T. Longaker, and F. B. Prinz, Biochem. Biophys. Res. Commun. 397, 12 (2010).
http://dx.doi.org/10.1016/j.bbrc.2010.05.003
28.
28. G. Tai, B. Reid, L. Cao, and M. Zhao, Methods Mol. Biol. 571, 77 (2009).
http://dx.doi.org/10.1007/978-1-60761-198-1
29.
29. S. Kim, H. J. Kim, and N. L. Jeon, Integr. Biol. 2, 584 (2010).
http://dx.doi.org/10.1039/c0ib00055h
30.
30. P. Rezai, A. Siddiqui, P. Selvaganapathy, and B. Gupta, Lab Chip 10, 220 (2010).
http://dx.doi.org/10.1039/b917486a
31.
31. N. Minc and F. Chang, Curr. Biol. 20, 710 (2010).
http://dx.doi.org/10.1016/j.cub.2010.02.047
32.
32. C.-C. Wang, Y.-C. Kao, P.-Y. Chi, C.-W. Huang, J.-Y. Lin, C.-F. Chou, J.-Y. Cheng, and C.-H. Lee, Lab Chip 11, 695 (2011).
http://dx.doi.org/10.1039/c0lc00155d
33.
33. A. A. Aly, M. I. Cheema, M. Tambawala, R. Laterza, E. Zhou, K. Rathnabharathi, and F. S. Barnes, IEEE Trans. Biomed. Eng. 55, 795 (2008).
http://dx.doi.org/10.1109/TBME.2007.912636
34.
34. F. Lin and E. Butcher, Lab Chip 6, 1462 (2006).
http://dx.doi.org/10.1039/b607071j
35.
35. Y. Hori, A. M. Winans, C. C. Huang, E. M. Horrigan, and D. J. Irvine, Biomaterials 29, 3671 (2008).
http://dx.doi.org/10.1016/j.biomaterials.2008.05.033
36.
36. K. W. Christopherson, J. J. Campbell, J. B. Travers, and R. A. Hromas, J. Pharmacol. Exp. Ther. 302, 290 (2002).
http://dx.doi.org/10.1124/jpet.302.1.290
37.
37. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, Nat. Methods 2, 599 (2005).
http://dx.doi.org/10.1038/nmeth777
38.
38. P. Friedl and B. Weigelin, Nat. Immunol. 9, 960 (2008).
http://dx.doi.org/10.1038/ni.f.212
39.
39. R. Förster, A. Davalos-Misslitz, and A. Rot, Nat. Rev. Immunol. 8, 362 (2008).
http://dx.doi.org/10.1038/nri2297
40.
40. D. F. Legler, P. Krause, E. Scandella, E. Singer, and M. Groettrup, J. Immunol. 176, 966 (2006).
41.
41. M. Zhao, Br. J. Pharmacol. 152, 1141 (2007).
http://dx.doi.org/10.1038/sj.bjp.0707503
42.
42. D. Wu and F. Lin, Biochem. Biophys. Res. Commun. 411, 695 (2011).
http://dx.doi.org/10.1016/j.bbrc.2011.07.004
43.
43. M.-M. Poo and K. R. Robinson, Nature 265, 602 (1977).
http://dx.doi.org/10.1038/265602a0
44.
44. M. Zhao, H. Bai, E. Wang, J. V. Forrester, and C. D. McCaig, J. Cell Sci. 117, 397 (2004).
http://dx.doi.org/10.1242/jcs.00868
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4718721
Loading
/content/aip/journal/bmf/6/2/10.1063/1.4718721
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.4718721
2012-05-16
2014-12-26

Abstract

Cell migration is involved in physiological processes such as wound healing, host defense, and cancermetastasis. The movement of various cell types can be directed by chemical gradients (i.e., chemotaxis). In addition to chemotaxis, many cell types can respond to direct current electric fields (dcEF) by migrating to either the cathode or the anode of the field (i.e., electrotaxis). In tissues, physiological chemical gradients and dcEF can potentially co-exist and the two guiding mechanisms may direct cell migration in a coordinated manner. Recently, microfluidic devices that can precisely configure chemical gradients or dcEF have been increasingly developed and used for chemotaxis and electrotaxis studies. However, a microfluidic device that can configure controlled co-existing chemical gradients and dcEF that would allow quantitative cell migration analysis in complex electrochemical guiding environments is not available. In this study, we developed a polydimethylsiloxane-based microfluidic device that can generate better controlled single or co-existing chemical gradients and dcEF. Using this device, we showed chemotactic migration of T cells toward a chemokine CCL19 gradient or electrotactic migration toward the cathode of an applied dcEF. Furthermore, T cells migrated more strongly toward the cathode of a dcEF in the presence of a competing CCL19 gradient, suggesting the higher electrotactic attraction. Taken together, the developed microfluidic device offers a new experimental tool for studying chemical and electrical guidance for cell migration, and our current results with T cells provide interesting new insights of immune cell migration in complex guiding environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.4718721.html;jsessionid=iid3e1eihbra.x-aip-live-03?itemId=/content/aip/journal/bmf/6/2/10.1063/1.4718721&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Microfluidic device for studying cell migration in single or co-existing chemical gradients and electric fields
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4718721
10.1063/1.4718721
SEARCH_EXPAND_ITEM