Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Luster, R. Alon, and U. von Andrian, Nat. Immunol. 6, 1182 (2005).
2. A. Muller, B. Homey, H. Soto, N. Ge, D. Catron, M. E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S. N. Wagner, J. L. Barrera, A. Mohar, E. Verastegui, and A. Zlotnik, Nature 410, 50 (2001).
3. M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Y. Gu, T. Sasaki, A. Suzuki, J. Forrester, H. Bourne, P. Devreotes, C. McCaig, and J. Penninger, Nature 442, 457 (2006).
4. T. Behar, A. Schaffner, C. Colton, R. Somogyi, Z. Olah, C. Lehel, and J. Barker, J. Neurosci. 14, 29 (1994).
5. J. Campbell and E. Butcher, Curr. Opin. Immunol. 12, 336 (2000).
6. P. Kubes, Semin. Immunol. 14, 65 (2002).
7. E. Kunkel and E. Butcher, Immunity 16, 1 (2002).
8. E. C. Butcher and L. J. Picker, Science 272, 60 (1996).
9. S. Menon and K. A. Beningo, PLoS ONE 6, e17277 (2011).
10. B. Song, Y. Gu, J. Pu, B. Reid, Z. Zhao, and M. Zhao, Nat. Protoc. 2, 1479 (2007).
11. J. Li, S. Nandagopal, D. Wu, S. F. Romanuik, K. Paul, D. J. Thomson, and F. Lin, Lab Chip 11, 1298 (2011).
12. F. Lin, F. Baldessari, C. Gyenge, T. Sato, R. Chambers, J. Santiago, and E. Butcher, J. Immunol. 181, 2465 (2008).
13. R. B. Frankel and R. P. Blakemore, Bioelectromagnetics 10, 223 (1989).
14. C. McCaig, A. Rajnicek, B. Song, and M. Zhao, Physiol. Rev. 85, 943 (2005).
15. C. Huang, J. Cheng, M. Yen, and T. Young, Biosens. Bioelectron. 24, 3510 (2009).
16. J. Zhang, M. Calafiore, Q. Zeng, X. Zhang, Y. Huang, R. Li, W. Deng, and M. Zhao, Stem Cell Rev. Rep. 7, 987 (2011).
17. M. Sato, H. Kuwayama, W. van Egmond, A. Takayama, H. Takagi, P. van Haastert, T. Yanagida, and M. Ueda, Proc. Natl. Acad. Sci. U.S.A. 106, 6667 (2009).
18. M. J. Sato, M. Ueda, H. Takagi, T. M. Watanabe, and T. Yanagida, Biosystems 88, 261 (2007).
19. M. B. A. Djamgoz, M. Mycielska, Z. Madeja, S. Fraser, and W. Korohoda, J. Cell Sci. 114, 2697 (2001).
20. M. Zhao, Semin. Cell Dev. Biol. 20, 674 (2009).
21. J. Li and F. Lin, Trends in Cell Biol. 21, 489 (2011).
22. R. D. Nelson, P. G. Quie, and R. L. Simmons, J. Immunol. 115, 1650 (1975).
23. S. Boyden, J. Exp. Med. 115, 453 (1962).
24. A. Lohof, M. Quillan, Y. Dan, and M. Poo, J. Neurosci. 12, 1253 (1992).
25. S. Zigmond, J. Cell Biol. 75, 606 (1977).
26. E. F. Foxman, J. J. Campbell, and E. C. Butcher, J. Cell Biol. 139, 1349 (1997).
27. K. E. Hammerick, M. T. Longaker, and F. B. Prinz, Biochem. Biophys. Res. Commun. 397, 12 (2010).
28. G. Tai, B. Reid, L. Cao, and M. Zhao, Methods Mol. Biol. 571, 77 (2009).
29. S. Kim, H. J. Kim, and N. L. Jeon, Integr. Biol. 2, 584 (2010).
30. P. Rezai, A. Siddiqui, P. Selvaganapathy, and B. Gupta, Lab Chip 10, 220 (2010).
31. N. Minc and F. Chang, Curr. Biol. 20, 710 (2010).
32. C.-C. Wang, Y.-C. Kao, P.-Y. Chi, C.-W. Huang, J.-Y. Lin, C.-F. Chou, J.-Y. Cheng, and C.-H. Lee, Lab Chip 11, 695 (2011).
33. A. A. Aly, M. I. Cheema, M. Tambawala, R. Laterza, E. Zhou, K. Rathnabharathi, and F. S. Barnes, IEEE Trans. Biomed. Eng. 55, 795 (2008).
34. F. Lin and E. Butcher, Lab Chip 6, 1462 (2006).
35. Y. Hori, A. M. Winans, C. C. Huang, E. M. Horrigan, and D. J. Irvine, Biomaterials 29, 3671 (2008).
36. K. W. Christopherson, J. J. Campbell, J. B. Travers, and R. A. Hromas, J. Pharmacol. Exp. Ther. 302, 290 (2002).
37. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, Nat. Methods 2, 599 (2005).
38. P. Friedl and B. Weigelin, Nat. Immunol. 9, 960 (2008).
39. R. Förster, A. Davalos-Misslitz, and A. Rot, Nat. Rev. Immunol. 8, 362 (2008).
40. D. F. Legler, P. Krause, E. Scandella, E. Singer, and M. Groettrup, J. Immunol. 176, 966 (2006).
41. M. Zhao, Br. J. Pharmacol. 152, 1141 (2007).
42. D. Wu and F. Lin, Biochem. Biophys. Res. Commun. 411, 695 (2011).
43. M.-M. Poo and K. R. Robinson, Nature 265, 602 (1977).
44. M. Zhao, H. Bai, E. Wang, J. V. Forrester, and C. D. McCaig, J. Cell Sci. 117, 397 (2004).

Data & Media loading...


Article metrics loading...



Cell migration is involved in physiological processes such as wound healing, host defense, and cancermetastasis. The movement of various cell types can be directed by chemical gradients (i.e., chemotaxis). In addition to chemotaxis, many cell types can respond to direct current electric fields (dcEF) by migrating to either the cathode or the anode of the field (i.e., electrotaxis). In tissues, physiological chemical gradients and dcEF can potentially co-exist and the two guiding mechanisms may direct cell migration in a coordinated manner. Recently, microfluidic devices that can precisely configure chemical gradients or dcEF have been increasingly developed and used for chemotaxis and electrotaxis studies. However, a microfluidic device that can configure controlled co-existing chemical gradients and dcEF that would allow quantitative cell migration analysis in complex electrochemical guiding environments is not available. In this study, we developed a polydimethylsiloxane-based microfluidic device that can generate better controlled single or co-existing chemical gradients and dcEF. Using this device, we showed chemotactic migration of T cells toward a chemokine CCL19 gradient or electrotactic migration toward the cathode of an applied dcEF. Furthermore, T cells migrated more strongly toward the cathode of a dcEF in the presence of a competing CCL19 gradient, suggesting the higher electrotactic attraction. Taken together, the developed microfluidic device offers a new experimental tool for studying chemical and electrical guidance for cell migration, and our current results with T cells provide interesting new insights of immune cell migration in complex guiding environments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd