1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.4720394
1.
1. T. Gervais, J. El-Ali, A. Gunther, and K. F. Jensen, Lab Chip 6, 500 (2006).
http://dx.doi.org/10.1039/b513524a
2.
2. I. Papautsky, T. Ameel, and A. B. Frazier, ASME International Mechanical Engineering Congress and Exposition, New York, NY, 1–9 November 2001.
3.
3. B. J. Adzima and S. S. Velankar, J. Micromech. Microeng. 16, 1504 (2006).
http://dx.doi.org/10.1088/0960-1317/16/8/010
4.
4. V. Labrot, M. Schindler, P. Guillot, A. Collin, and M. Joanicot, Biomicrofluidics 3, 012804 (2009).
http://dx.doi.org/10.1063/1.3109686
5.
5. C. J. Pipe and G. H. McKinley, Mech. Res. Commun. 36, 110 (2009).
http://dx.doi.org/10.1016/j.mechrescom.2008.08.009
6.
6. K. Chung, H. Lee, and H. Lu, Lab Chip 9, 3345 (2009).
http://dx.doi.org/10.1039/b911480g
7.
7. M. Abkarian, M. Faivre, and H. A. Stone, Proc. Natl. Acad. Sci. U.S.A. 103, 538 (2006).
http://dx.doi.org/10.1073/pnas.0507171102
8.
8. B. Z. Yang and Q. Lin, Micromech. Microeng. 16, 411 (2007).
http://dx.doi.org/10.1109/JMEMS.2007.892892
9.
9. M. S. N. Oliveira, M. A. Alves, F. T. Pinho, and G. H. McKinley, Exp. Fluids 43, 437 (2007).
http://dx.doi.org/10.1007/s00348-007-0306-2
10.
10. M. Kohl, S. Abdelkhalik, S. Jeter, and D. Sadowski, Sens. Actuators, A 118, 212 (2005).
http://dx.doi.org/10.1016/j.sna.2004.07.014
11.
11. D. A. Ateya, A. A. Shah, and S. Z. Hua, Ses. Actuators, A 122, 235 (2005).
http://dx.doi.org/10.1016/j.sna.2005.06.006
12.
12. A. Kuoni, R. L. Holzherr, M. Boillat, and N. F. De Rooij, J. Micromech. Microeng. 13, S103S107 (2003).
http://dx.doi.org/10.1088/0960-1317/13/4/317
13.
13. C. Y. Wu, W. H. Liao, and Y. C. Tung, Lab Chip 11, 1740 (2011).
http://dx.doi.org/10.1039/c0lc00620c
14.
14. K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
http://dx.doi.org/10.1088/0960-1317/12/1/301
15.
15. E. P. Kartalov, G. Maltezos, W. F. Anderson, C. R. Taylor, and A. Scherer, J. Appl. Phys. 102, 084909 (2007).
http://dx.doi.org/10.1063/1.2801008
16.
16. W. Y. Chang, C. H. Chu, and Y. C. Lin, IEEE Sens. J. 8, 495 (2008).
http://dx.doi.org/10.1109/JSEN.2008.918749
17.
17. B. S. Hardy, K. Uechi, J. Zhen, and H. P. Kavehpour, Lab Chip 9, 935 (2009).
http://dx.doi.org/10.1039/b813061b
18.
18. N. Ichikawa, N. Hosokawa, and R. Maeda, J. Colloid Interface. Sci. 280, 155 (2004).
http://dx.doi.org/10.1016/j.jcis.2004.07.017
19.
19. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir 19, 9127 (2003).
http://dx.doi.org/10.1021/la030090w
20.
20. H. Li and M. G. Olsen, Int. J. Heat Fluid Flow 27, 123 (2006).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.02.003
21.
21. K. Young Won and Y. Jung Yul, J. Micromech. Microeng. 18, 065015 (2008).
http://dx.doi.org/10.1088/0960-1317/18/6/065015
22.
22. B. Zheng, J. D. Tice, and R. F. Ismagilov, Adv. Mater. 16, 1365 (2004).
http://dx.doi.org/10.1002/adma.200400590
23.
23. H. Bruus, Theoretical Microfluidics (Oxford University Press, New York, 2008).
24.
24. Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
25.
25. M. L. Sheely, Ind. Eng. Chem. 24, 1060 (1932).
http://dx.doi.org/10.1021/ie50273a022
26.
26. R. Mukhopadhyay, Anal. Chem. 79, 3248 (2007).
http://dx.doi.org/10.1021/ac071903e
27.
27. Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y. Tung, G. D. Smith, and S. Takayama, Anal. Chem. 79, 1126 (2007).
http://dx.doi.org/10.1021/ac061990v
28.
28. K. Khanafer, A. Duprey, M. Schlicht, and R. Berguer, Biomed. Microdevices 11, 503 (2009).
http://dx.doi.org/10.1007/s10544-008-9256-6
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4720394
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A schematic of the channel design used, showing the (i) main channel inlet/outlet ports, (ii) main flow channel, (iii) transducer channels, (iv) transducer inlet/outlet ports.

Image of FIG. 2.

Click to view

FIG. 2.

A detailed schematic showing the various external components to the microfluidic device: (i) glass slide, (ii) PDMS layer, (iii) transducer port, (iv) linking tube, (v) transducer tubing, (vi) main channel port, (vii) pressure transducer.

Image of FIG. 3.

Click to view

FIG. 3.

Examples of dynamic pressure drop measurements upon a change in flow-rate using DI water and the 50 wt. % glycerol solution within device A. Steady state for DI water and 50 wt. % glycerol solution was achieved after ∼30 s and ∼70 s, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

Pressure drop vs. flow-rate data (dot) and analytic expressions (lines) for DI water. (a) Device A, Re , (b) device B, Re , (c) device C, Re .

Image of FIG. 5.

Click to view

FIG. 5.

Pressure drop vs. flow-rate data (dot) and analytic expressions (lines) for a 50 wt. % glycerol solution (a) device A, Re , (b) device B, Re , (c) device C, Re .

Image of FIG. 6.

Click to view

FIG. 6.

Scaled pressure drop measurements versus flow-rate data for both the DI water (filled symbols) and the 50 wt. % glycerol solution (open symbols) for all three device dimensions (1000 μm, 500 μm, and 200 μm).

Tables

Generic image for table

Click to view

Table I.

Important dimensions for the three devices (see Figure 1 for reference).

Generic image for table

Click to view

Table II.

Best-fit α values for each device for both DI water and the 50 wt. % glycerol solution.

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.4720394
2012-05-18
2014-04-17

Abstract

In this paper, we present a simple procedure to incorporate commercially available external pressuretransducers into existing microfluidic devices, to monitor pressure-drop in real-time, with minimal design modifications to pre-existing channel designs. We focus on the detailed fabrication steps and assembly to make the process straightforward and robust. The work presented here will benefit those interested in adding pressuredropmeasurements in polydimethylsiloxane(PDMS) based microchannels without having to modify existing channel designs or requiring additional fabrication steps. By using three different devices with varying aspect ratio channels (, width/depth), we demonstrate that our approach can easily be adapted into existing channel designs inexpensively. Furthermore, our approach can achieve steady state measurements within a matter of minutes (depending on the fluid) and can easily be used to investigate dynamic pressuredrops. In order to validate the accuracy of the measuredpressuredrops within the three different aspect ratio devices, we compared measuredpressuredrops of de-ionized water and a 50 wt. % glycerol aqueous solution to four different theoretical expressions. Due to the deformability of PDMS,measuredpressuredrops were smaller than those predicted by the rigid channel theories (plate and rectangular). Modification of the rigid channel theories with a deformability parameter α provided better fits to the measured data. The elastic rectangular expression developed in this paper does not have a geometric restriction and is better suited for microchannels with a wider range of aspect ratios.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.4720394.html;jsessionid=7augs95aodi7k.x-aip-live-02?itemId=/content/aip/journal/bmf/6/2/10.1063/1.4720394&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: In situ pressure measurement within deformable rectangular polydimethylsiloxane microfluidic devices
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4720394
10.1063/1.4720394
SEARCH_EXPAND_ITEM