Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Gervais, J. El-Ali, A. Gunther, and K. F. Jensen, Lab Chip 6, 500 (2006).
2. I. Papautsky, T. Ameel, and A. B. Frazier, ASME International Mechanical Engineering Congress and Exposition, New York, NY, 1–9 November 2001.
3. B. J. Adzima and S. S. Velankar, J. Micromech. Microeng. 16, 1504 (2006).
4. V. Labrot, M. Schindler, P. Guillot, A. Collin, and M. Joanicot, Biomicrofluidics 3, 012804 (2009).
5. C. J. Pipe and G. H. McKinley, Mech. Res. Commun. 36, 110 (2009).
6. K. Chung, H. Lee, and H. Lu, Lab Chip 9, 3345 (2009).
7. M. Abkarian, M. Faivre, and H. A. Stone, Proc. Natl. Acad. Sci. U.S.A. 103, 538 (2006).
8. B. Z. Yang and Q. Lin, Micromech. Microeng. 16, 411 (2007).
9. M. S. N. Oliveira, M. A. Alves, F. T. Pinho, and G. H. McKinley, Exp. Fluids 43, 437 (2007).
10. M. Kohl, S. Abdelkhalik, S. Jeter, and D. Sadowski, Sens. Actuators, A 118, 212 (2005).
11. D. A. Ateya, A. A. Shah, and S. Z. Hua, Ses. Actuators, A 122, 235 (2005).
12. A. Kuoni, R. L. Holzherr, M. Boillat, and N. F. De Rooij, J. Micromech. Microeng. 13, S103S107 (2003).
13. C. Y. Wu, W. H. Liao, and Y. C. Tung, Lab Chip 11, 1740 (2011).
14. K. Hosokawa, K. Hanada, and R. Maeda, J. Micromech. Microeng. 12, 1 (2002).
15. E. P. Kartalov, G. Maltezos, W. F. Anderson, C. R. Taylor, and A. Scherer, J. Appl. Phys. 102, 084909 (2007).
16. W. Y. Chang, C. H. Chu, and Y. C. Lin, IEEE Sens. J. 8, 495 (2008).
17. B. S. Hardy, K. Uechi, J. Zhen, and H. P. Kavehpour, Lab Chip 9, 935 (2009).
18. N. Ichikawa, N. Hosokawa, and R. Maeda, J. Colloid Interface. Sci. 280, 155 (2004).
19. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir 19, 9127 (2003).
20. H. Li and M. G. Olsen, Int. J. Heat Fluid Flow 27, 123 (2006).
21. K. Young Won and Y. Jung Yul, J. Micromech. Microeng. 18, 065015 (2008).
22. B. Zheng, J. D. Tice, and R. F. Ismagilov, Adv. Mater. 16, 1365 (2004).
23. H. Bruus, Theoretical Microfluidics (Oxford University Press, New York, 2008).
24. Y. N. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998).
25. M. L. Sheely, Ind. Eng. Chem. 24, 1060 (1932).
26. R. Mukhopadhyay, Anal. Chem. 79, 3248 (2007).
27. Y. S. Heo, L. M. Cabrera, J. W. Song, N. Futai, Y. Tung, G. D. Smith, and S. Takayama, Anal. Chem. 79, 1126 (2007).
28. K. Khanafer, A. Duprey, M. Schlicht, and R. Berguer, Biomed. Microdevices 11, 503 (2009).

Data & Media loading...


Article metrics loading...



In this paper, we present a simple procedure to incorporate commercially available external pressuretransducers into existing microfluidic devices, to monitor pressure-drop in real-time, with minimal design modifications to pre-existing channel designs. We focus on the detailed fabrication steps and assembly to make the process straightforward and robust. The work presented here will benefit those interested in adding pressuredropmeasurements in polydimethylsiloxane(PDMS) based microchannels without having to modify existing channel designs or requiring additional fabrication steps. By using three different devices with varying aspect ratio channels (, width/depth), we demonstrate that our approach can easily be adapted into existing channel designs inexpensively. Furthermore, our approach can achieve steady state measurements within a matter of minutes (depending on the fluid) and can easily be used to investigate dynamic pressuredrops. In order to validate the accuracy of the measuredpressuredrops within the three different aspect ratio devices, we compared measuredpressuredrops of de-ionized water and a 50 wt. % glycerol aqueous solution to four different theoretical expressions. Due to the deformability of PDMS,measuredpressuredrops were smaller than those predicted by the rigid channel theories (plate and rectangular). Modification of the rigid channel theories with a deformability parameter α provided better fits to the measured data. The elastic rectangular expression developed in this paper does not have a geometric restriction and is better suited for microchannels with a wider range of aspect ratios.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd