1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/6/2/10.1063/1.4720396
1.
1. M. Das, H. Zhang, and E. Kumacheva, Annu. Rev. Mater. Res. 36, 117 (2006).
http://dx.doi.org/10.1146/annurev.matsci.36.011205.123513
2.
2. H. Zhang, E. Tumarkin, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, Macromol. Rapid Commun. 28, 527 (2007).
http://dx.doi.org/10.1002/marc.200600776
3.
3. P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, Lab Chip 8, 1056 (2008).
http://dx.doi.org/10.1039/b804234a
4.
4. L. K. Fiddes, E. W. K. Young, E. Kumacheva, and A. R. Wheeler, Lab Chip 7, 863 (2007).
http://dx.doi.org/10.1039/b703297h
5.
5. S. Q. Xu, Z. H. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Angew. Chem., Int. Ed. 44, 3799 (2005).
http://dx.doi.org/10.1002/anie.200462226
6.
6. R. K. Shah, J. W. Kim, J. J. Agresti, D. A. Weitz, and L. Y. Chu, Soft Matter 4, 2303 (2008).
http://dx.doi.org/10.1039/b808653m
7.
7. J. Zhu and R. C. Hayward, Angew. Chem., Int. Ed. 47, 2113 (2008).
http://dx.doi.org/10.1002/anie.200704863
8.
8. W. H. Tan and S. Takeuchi, Adv. Mater. 19, 2696 (2007).
http://dx.doi.org/10.1002/adma.200700433
9.
9. H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R. M. A. Sullan, G. C. Walker, and E. Kumacheva, J. Am. Chem. Soc. 128, 12205 (2006).
http://dx.doi.org/10.1021/ja0635682
10.
10. T. Kanai, D. Lee, H. C. Shum, and D. A. Weitz, Small 6, 807 (2010).
http://dx.doi.org/10.1002/smll.200902314
11.
11. B. G. De Geest, J. P. Urbanski, T. Thorsen, J. Demeester, and S. C. De Smedt, Langmuir 21, 10275 (2005).
http://dx.doi.org/10.1021/la051527y
12.
12. J. Thiele and S. Seiffert, Lab Chip 11, 3188 (2011).
http://dx.doi.org/10.1039/c1lc20242a
13.
13. W. Li, J. Greener, D. Voicu, and E. Kumacheva, Lab Chip 9, 2715 (2009).
http://dx.doi.org/10.1039/b906626h
14.
14. E. H. M. Wong, E. Rondeau, P. Schuetz, and J. Cooper-White, Lab Chip 9, 2582 (2009).
http://dx.doi.org/10.1039/b903774h
15.
15. J. W. Kim, A. S. Utada, A. Fernandez-Nieves, Z. B. Hu, and D. A. Weitz, Angew. Chem., Int. Ed. 46, 1819 (2007).
http://dx.doi.org/10.1002/anie.200604206
16.
16. V. L. Workman, S. B. Dunnett, P. Kille, and D. D. Palmer, Biomicrofluidics 1, 014105 (2007).
http://dx.doi.org/10.1063/1.2431860
17.
17. Z. H. Nie, W. Li, M. Seo, S. Q. Xu, and E. Kumacheva, J. Am. Chem. Soc. 128, 9408 (2006).
http://dx.doi.org/10.1021/ja060882n
18.
18. D. K. Hwang, D. Dendukuri, and P. S. Doyle, Lab Chip 8, 1640 (2008).
http://dx.doi.org/10.1039/b805176c
19.
19. D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, Nature Mater. 5, 365 (2006).
http://dx.doi.org/10.1038/nmat1617
20.
20. D. Dendukuri, T. A. Hatton, and P. S. Doyle, Langmuir 23, 4669 (2007).
http://dx.doi.org/10.1021/la062512i
21.
21. K. Liu, H. J. Ding, J. Liu, Y. Chen, and X. Z. Zhao, Langmuir 22, 9453 (2006).
http://dx.doi.org/10.1021/la061729+
22.
22. D. K. Hwang, J. Oakey, M. Toner, J. A. Arthur, K. S. Anseth, S. Lee, A. Zeiger, K. J. Van Vliet, and P. S. Doyle, J. Am. Chem. Soc. 131, 4499 (2009).
http://dx.doi.org/10.1021/ja809256d
23.
23. X. H. Ji, W. Cheng, F. Guo, W. Liu, S. S. Guo, Z. K. He, and X. Z. Zhao, Lab Chip 11, 2561 (2011).
http://dx.doi.org/10.1039/c1lc20150f
24.
24. S. Mukherjee and K. Sarkar, Phys. Fluids 23, 013101 (2011).
http://dx.doi.org/10.1063/1.3533261
25.
25. M. C. Sostarecz and A. Belmonte, J. Fluid Mech. 497, 235 (2003).
http://dx.doi.org/10.1017/S0022112003006621
26.
26. R. You, H. Haj-Hariri, and A. Borhan, Phys. Fluids 21, 013102 (2009).
http://dx.doi.org/10.1063/1.3054156
27.
27. A. S. Hsu and L. G. Leal, J. Non-Newtonian Fluid Mech. 160, 176 (2009).
http://dx.doi.org/10.1016/j.jnnfm.2009.03.004
28.
28. N. Baumann, Phys. Fluids A 4, 567 (1992).
http://dx.doi.org/10.1063/1.858328
29.
29. L. Capretto, S. Mazzitelli, C. Balestra, A. Tosi, and C. Nastruzzi, Lab Chip 8, 617 (2008).
http://dx.doi.org/10.1039/b714876c
30.
30. E. S. Chan, B. B. Lee, P. Ravindra, and D. Poncelet, J. Colloid Interface Sci. 338, 63 (2009).
http://dx.doi.org/10.1016/j.jcis.2009.05.027
31.
31. H. A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994).
http://dx.doi.org/10.1146/annurev.fl.26.010194.000433
32.
32. X. Frank and H. Z. Li, Phys. Rev. E 74, 056307 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.056307
33.
33. A. Saidi, C. Martin, and A. Magnin, J. Non-Newtonian Fluid Mech. 165, 596 (2010).
http://dx.doi.org/10.1016/j.jnnfm.2010.02.020
34.
34. See supplementary material at http://dx.doi.org/10.1063/1.4720396 for detailed procedure of experiment and additional experiment data. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4720396
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic illustration of the experimental setup. Uniform water droplets containing 1.5 wt. % sodium alginate dispersed in n-decanol containing 5 wt. % Span 80 were generated in a microcapillary device. The droplets were then collected into a gelation bath which contained a double layer of two solutions: the upper n-decanol layer with 5 wt. % Span 80, and the bottom aqueous layer with 15 wt. % barium diacetate [Ba(Ac)2 or calcium diacetate, Ca(Ac)2], acting as a crosslinking agent. Glycerol was introduced to the bottom aqueous layer to regulate the viscosity of the fluid. Small amount of calcium chloride (CaCl2), acting as a pre-crosslinking agent, was added to the upper oil layer to form spherical or hemi-spherical microgels.

Image of FIG. 2.

Click to view

FIG. 2.

Alginate microgel particles with varied morphologies obtained by accurately controlling the preparation conditions, which are listed in Table S1 (see supplementary material34).

Image of FIG. 3.

Click to view

FIG. 3.

SEM images of the freeze-dried microgel particles which were prepared from alginate microgels with varied shapes: (a) spherical microgels, corresponded to Fig. 4(a), (b) tailed microgels, corresponded to Fig. 2(b)–2(d) mushroom-like microgels, corresponded to Figs. 2(b) and 2(c), respectively. It is clear that the shape of the microgel particles was maintained during the sample preparation and the analysis.

Image of FIG. 4.

Click to view

FIG. 4.

Morphologies of alginate microgel can be continuously controlled by changing the viscosities and interfacial tension of the gelation bath. Detailed preparation conditions are summarized [see Table S2 in supplementary material34].

Image of FIG. 5.

Click to view

FIG. 5.

The plot shows the relationship between the aspect ratio [A/R, defined as the maximum length parallel to the tail (A) over the maximum length perpendicular to the tail (R)] of the tailed microgels and the glycerol concentration in the gelation bath. The microgels were prepared from an aqueous 1.5 wt. % SA solution with a flow rate of 1800/30 (O/W) μl h−1; in gelation bath, the upper oil layer consisting of n-decanol dispersed with 5 wt. % span 80 while the aqueous bottom layer consists of an aqueous solution containing 15 wt. % Ba(Ac)2 and varying glycerol concentration. The insets are the representative optical microscopy images for the selected points. Error bars represent the standard deviation.

Image of FIG. 6.

Click to view

FIG. 6.

Release behavior of iopamidol-loaded alginate microgel with varied morphologies which were prepared through the procedure as described above.

Loading

Article metrics loading...

/content/aip/journal/bmf/6/2/10.1063/1.4720396
2012-05-18
2014-04-16

Abstract

Alginate microgels with varied shapes, such as mushroom-like, hemi-spherical, red blood cell-like, and others, were generated by combining microfluidic and external ionic crosslinking methods. This novel method allows a continuous fine tuning of the microgel particles shape by simply varying the gelation conditions, e.g., viscosity of the gelation bath, collecting height, interfacial tension. The release behavior of iopamidol-loaded alginate microgel particles with varied morphologies shows significant differences. Our technique can also be extended to microgelsformation from different anionic biopolymers, providing new opportunities to produce microgels with various anisotropic dimensions for the applications in drug delivery, optical devices, and in advanced materials formation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/6/2/1.4720396.html;jsessionid=25b96qf05crbh.x-aip-live-06?itemId=/content/aip/journal/bmf/6/2/10.1063/1.4720396&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking
http://aip.metastore.ingenta.com/content/aip/journal/bmf/6/2/10.1063/1.4720396
10.1063/1.4720396
SEARCH_EXPAND_ITEM