1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4774307
1.
1. S. Dawood, K. Broglio, V. Valero, J. Reuben, B. Handy, R. Islam, S. Jackson, G. N. Hortobagyi, H. Fritsche, and M. Cristofanilli, Cancer 113, 24222430 (2008).
http://dx.doi.org/10.1002/cncr.23852
2.
2. J. S. de Bono, H. I. Scher, R. B. Montgomery, C. Parker, M. C. Miller, H. Tissing, G. V. Doyle, L. W. Terstappen, K. J. Pienta, and D. Raghavan, Clin. Cancer Res. 14, 63026309 (2008).
http://dx.doi.org/10.1158/1078-0432.CCR-08-0872
3.
3. N. J. Meropol, Clin. Adv. Hematol. Oncol. 7, 247248 (2009).
4.
4. W. Xu, L. Cao, L. Chen, J. Li, X. F. Zhang, H. H. Qian, X. Y. Kang, Y. Zhang, J. Liao, L. H. Shi, Y. F. Yang, M. C. Wu, and Z. F. Yin, Clin. Cancer Res. 17, 37833793 (2011).
5.
5. K. Koyanagi, S. J. O'Day, P. Boasberg, M. B. Atkins, H. J. Wang, R. Gonzalez, K. Lewis, J. A. Thompson, C. M. Anderson, J. Lutzky, T. T. Amatruda, E. Hersh, J. Richards, J. S. Weber, and D. S. Hoon, Clin. Cancer Res. 16, 24022408 (2010).
6.
6. T. Kurihara, T. Itoi, A. Sofuni, F. Itokawa, T. Tsuchiya, S. Tsuji, K. Ishii, N. Ikeuchi, A. Tsuchida, K. Kasuya, T. Kawai, Y. Sakai, and F. Moriyasu, J. Hepatobiliary Pancreat Surg. 15, 189195 (2008).
http://dx.doi.org/10.1007/s00534-007-1250-5
7.
7. N. Bednarz-Knoll, C. Alix-Panabieres, and K. Pantel, Breast Cancer Res. 13, 228 (2011).
8.
8. P. Paterlini-Brechot and N. L. Benali, Cancer Lett. 253, 180204 (2007).
http://dx.doi.org/10.1016/j.canlet.2006.12.014
9.
9. M. A. Leversha, J. Han, Z. Asgari, D. C. Danila, O. Lin, R. Gonzalez-Espinoza, A. Anand, H. Lilja, G. Heller, M. Fleisher, and H. I. Scher, Clin. Cancer Res. 15, 20912097 (2009).
http://dx.doi.org/10.1158/1078-0432.CCR-08-2036
10.
10. K. Pachmann, O. Camara, T. Kroll, M. Gajda, A. K. Gellner, J. Wotschadlo, and I. B. Runnebaum, J. Cancer Res. Clin. Oncol. 137, 13171327 (2011).
11.
11. M. C. Miller, G. V. Doyle, and L. W. Terstappen, J. Oncol. 2010, 617421.
12.
12. S. J. Cohen, C. J. Punt, N. Iannotti, B. H. Saidman, K. D. Sabbath, N. Y. Gabrail, J. Picus, M. Morse, E. Mitchell, M. C. Miller, G. V. Doyle, H. Tissing, L. W. Terstappen, and N. J. Meropol, J. Clin. Oncol. 26, 32133221 (2008).
http://dx.doi.org/10.1200/JCO.2007.15.8923
13.
13. C. Raimondi, A. Gradilone, G. Naso, B. Vincenzi, A. Petracca, C. Nicolazzo, A. Palazzo, R. Saltarelli, F. Spremberg, E. Cortesi, and P. Gazzaniga, Breast Cancer Res. Treat 130, 449455 (2011).
14.
14. A. Bonnomet, A. Brysse, A. Tachsidis, M. Waltham, E. W. Thompson, M. Polette, and C. Gilles, J. Mammary Gland Biol. Neoplasia 15, 261273 (2010).
15.
15. S. Riethdorf and K. Pantel, Pathobiology 75, 140148 (2008).
http://dx.doi.org/10.1159/000123852
16.
16. F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. Gascoyne, Proc. Natl. Acad. Sci. USA 92, 860864 (1995).
http://dx.doi.org/10.1073/pnas.92.3.860
17.
17. H. S. Moon, K. Kwon, S. I. Kim, H. Han, J. Sohn, S. Lee, and H. I. Jung, Lab Chip 11, 11181125 (2011).
http://dx.doi.org/10.1039/c0lc00345j
18.
18. L. Wang, J. Lu, S. A. Marchenko, E. S. Monuki, L. A. Flanagan, and A. P. Lee, Electrophoresis 30, 782791 (2009).
http://dx.doi.org/10.1002/elps.200800637
19.
19. X. B. Wang, J. Vykoukal, F. F. Becker, and P. R. Gascoyne, Biophys. J. 74, 26892701 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77975-5
20.
20. X. B. Wang, J. Yang, Y. Huang, J. Vykoukal, F. F. Becker, and P. R. Gascoyne, Anal. Chem. 72, 832839 (2000).
http://dx.doi.org/10.1021/ac990922o
21.
21. P. R. C. Gascoyne, J. Noshari, T. J. Anderson, and F. F. Becker, Electrophoresis 30, 13881398 (2009).
http://dx.doi.org/10.1002/elps.200800373
22.
22. Y. Huang, J. Yang, X. B. Wang, F. F. Becker, and P. R. Gascoyne, J. Hematother. Stem Cell Res. 8, 481490 (1999).
http://dx.doi.org/10.1089/152581699319939
23.
23. R. Sokilde, B. Kaczkowski, A. Podolska, S. Cirera, J. Gorodkin, S. Moller, and T. Litman, Mol. Cancer Ther. 10, 375384 (2011).
http://dx.doi.org/10.1158/1535-7163.MCT-10-0605
24.
24. P. L. Lorenzi, W. C. Reinhold, S. Varma, A. A. Hutchinson, Y. Pommier, S. J. Chanock, and J. N. Weinstein, Mol. Cancer Ther. 8, 713724 (2009).
http://dx.doi.org/10.1158/1535-7163.MCT-08-0921
25.
25. U. T. Shankavaram, W. C. Reinhold, S. Nishizuka, S. Major, D. Morita, K. K. Chary, M. A. Reimers, U. Scherf, A. Kahn, D. Dolginow, J. Cossman, E. P. Kaldjian, D. A. Scudiero, E. Petricoin, L. Liotta, J. K. Lee, and J. N. Weinstein, Mol. Cancer Ther. 6, 820832 (2007).
http://dx.doi.org/10.1158/1535-7163.MCT-06-0650
26.
26. A. V. Roschke, G. Tonon, K. S. Gehlhaus, N. McTyre, K. J. Bussey, S. Lababidi, D. A. Scudiero, J. N. Weinstein, and I. R. Kirsch, Cancer Res. 63, 86348647 (2003).
27.
27. P. R. C. Gascoyne, “Isolation and characterization of cells by dielectrophoretic field-flow fractionation,” in Field-Flow Fractionation in Biopolymer Analysis (Springer-Verlag, 2012).
28.
28. S. Shim, K. Stemke-Hale, A. M. Tsimberidou, J. Noshari, T. E. Anderson, and P. R. C. Gascoyne, Biomicrofluidics 7, 011807 (2013).
http://dx.doi.org/10.1063/1.4774304
29.
29. V. Gupta, I. Jafferji, M. Garza, V. Melnikova, D. Hasegawa, R. Pethig, and D. Davis, Biomicrofluidics 6, 024133 (2012).
http://dx.doi.org/10.1063/1.4731647
30.
30. J. Vykoukal, D. M. Vykoukal, S. Freyberg, E. U. Alt, and P. R. Gascoyne, Lab Chip 8, 13861393 (2008).
http://dx.doi.org/10.1039/b717043b
31.
31. P. R. Gascoyne, Anal. Chem. 81, 88788885 (2009).
http://dx.doi.org/10.1021/ac901470z
32.
32. S. Shim, P. Gascoyne, J. Noshari, and K. S. Hale, Integr. Biol. 3, 850862 (2011).
http://dx.doi.org/10.1039/c1ib00032b
33.
33. M. A. Mader, V. Vitkova, M. Abkarian, A. Viallat, and T. Podgorski, Eur. Phys. J. E 19, 389397 (2006).
http://dx.doi.org/10.1140/epje/i2005-10058-x
34.
34. M. Abkarian and A. Viallat, Biophys. J. 89, 10551066 (2005).
http://dx.doi.org/10.1529/biophysj.104.056036
35.
35. M. Abkarian, C. Lartigue, and A. Viallat, Phys. Rev. Lett. 88, 068103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.068103
36.
36. T. B. Jones and G. A. Kallio, J. Electrostat. 6, 18 (1979).
http://dx.doi.org/10.1016/S0005-2760(97)00092-1
37.
37. K. L. Chan, P. R. Gascoyne, F. F. Becker, and R. Pethig, Biochim. Biophys. Acta 1349, 182196 (1997); available at http://www.sciencedirect.com/science/article/pii/S0005276097000921.
38.
38. R. Pethig, Biomicrofluidics 4, 022811 (2010).
http://dx.doi.org/10.1063/1.3456626
39.
39. P. Marszalek, J. J. Zielinsky, M. Fikus, and T. Y. Tsong, Biophys. J. 59, 982987 (1991).
http://dx.doi.org/10.1016/S0006-3495(91)82312-8
40.
40. Y. Huang, X. B. Wang, F. F. Becker, and P. R. Gascoyne, Biochim. Biophys. Acta 1282, 7684 (1996); available at http://www.sciencedirect.com/science/article/pii/0005273696000478.
http://dx.doi.org/10.1016/0005-2736(96)00047-8
41.
41. P. R. C. Gascoyne, S. Shim, J. Noshari, F. F. Becker, H. Huang, R. Pethig, J. Vykoukal, P. R. C. Gascoyne, and K. Stemke-Hale, “Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation,” Electrophoresis (in press).
42.
42. D. M. Vykoukal, P. R. C. Gascoyne, and J. Vykoukal, Integr. Biol. 1, 477484 (2009).
http://dx.doi.org/10.1039/b906137a
43.
43. X. B. Wang, Y. Huang, P. R. Gascoyne, F. F. Becker, R. Holzel, and R. Pethig, Biochim. Biophys. Acta 1193, 330344 (1994).
http://dx.doi.org/10.1016/0005-2736(94)90170-8
44.
44. M. Cristofanilli, G. De Gasperis, L. Zhang, M.-C. Hung, P. R. C. Gascoyne, and G. N. Hortobagyi, Clin. Cancer Res. 8, 615619 (2002).
45.
45. Y. Huang, X. B. Wang, P. R. Gascoyne, and F. F. Becker, Biochim. Biophys. Acta 1417, 5162 (1999).
http://dx.doi.org/10.1016/S0005-2736(98)00253-3
46.
46. U. Kim, C.-W. Shu, K. Y. Dane, P. S. Daugherty, J. Y. J. Wang, and H. T. Soh, Proc. Natl. Acad. Sci. USA 104, 2070820712 (2007).
http://dx.doi.org/10.1073/pnas.0708760104
47.
47. X. Wang, F. F. Becker, and P. R. C. Gascoyne, Biochim. Biophys. Acta 1564, 412420 (2002).
http://dx.doi.org/10.1016/S0005-2736(02)00495-9
48.
48. S. Pui-ock, M. Ruchirawat, and P. Gascoyne, Anal. Chem. 80, 77277734 (2008).
http://dx.doi.org/10.1021/ac801095p
49.
49. R. Pethig and D. B. Kell, Phys. Med. Biol. 32, 933970 (1987).
http://dx.doi.org/10.1088/0031-9155/32/8/001
50.
50. X. Tong and K. D. Caldwell, J. Chromatogr. B: Biomed. Appl. 674, 3947 (1995).
http://dx.doi.org/10.1016/0378-4347(95)00297-0
51.
51. T. Chianea, N. E. Assidjo, and P. J. Cardot, Talanta 51, 835847 (2000).
http://dx.doi.org/10.1016/S0039-9140(99)00335-5
52.
52. R. Rosenberg, R. Gertler, J. Friederichs, K. Fuehrer, M. Dahm, R. Phelps, S. Thorban, H. Nekarda, and J. R. Siewert, Cytometry 49, 150158 (2002).
http://dx.doi.org/10.1002/cyto.10161
53.
53. F. F. Becker, H. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, J. Phys. D: Appl. Phys. 27, 26592662 (1994).
http://dx.doi.org/10.1088/0022-3727/27/12/030
54.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4774307
Loading
/content/aip/journal/bmf/7/1/10.1063/1.4774307
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4774307
2013-01-16
2014-07-28

Abstract

The number of circulating tumor cells (CTCs) found in blood is known to be a prognostic marker for recurrence of primary tumors, however, most current methods for isolating CTCs rely on cell surface markers that are not universally expressed by CTCs. Dielectrophoresis (DEP) can discriminate and manipulate cancer cells in microfluidic systems and has been proposed as a molecular marker-independent approach for isolating CTCs from blood. To investigate the potential applicability of DEP to different cancer types, the dielectric and density properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic field-flow fractionation (DEP-FFF) and compared with like properties of the subpopulations of normal peripheral blood cells. We show that all of the NCI-60 cell types, regardless of tissue of origin, exhibit dielectric properties that facilitate their isolation from blood by DEP. Cell types derived from solid tumors that grew in adherent cultures exhibited dielectric properties that were strikingly different from those of peripheral blood cell subpopulations while leukemia-derived lines that grew in non-adherent cultures exhibited dielectric properties that were closer to those of peripheral blood cell types. Our results suggest that DEP methods have wide applicability for the surface-marker independent isolation of viable CTCs from blood as well as for the concentration of leukemia cells from blood.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4774307.html;jsessionid=5ciq3o4672m93.x-aip-live-03?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4774307&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4774307
10.1063/1.4774307
SEARCH_EXPAND_ITEM