1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4774311
1.
1. R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, Proc. Natl. Acad. Sci. U.S.A. 101, 10501 (2004).
http://dx.doi.org/10.1073/pnas.0404036101
2.
2. M. E. Vincent, W. S. Liu, E. B. Haney, and R. F. Ismagilov, Chem. Soc. Rev. 39, 974 (2010).
http://dx.doi.org/10.1039/b917851a
3.
3. D. F. Hayes, M. C. Miller, M. Cristofanilli, M. J. Ellis, A. Stopek, W. J. Allard, J. Matera, G. V. Doyle, L. W. W. M. Terstappen, and G. T. Budd, Breast Cancer Res. Treat. 88, S225 (2004).
4.
4. D. W. Bell and D. A. Haber, Clin. Cancer Res. 12, 3875 (2006).
http://dx.doi.org/10.1158/1078-0432.CCR-06-0670
5.
5. B. Mostert, S. Sleijfer, J. A. Foekens, and J. W. Gratama, Cancer Treat. Rev. 35, 463 (2009).
http://dx.doi.org/10.1016/j.ctrv.2009.03.004
6.
6. J. Sun, Y. Gao, R. J. Isaacs, K. C. Boelte, C. P. Lin, E. M. Boczko, and D. Li, Anal. Chem. 84, 2017 (2012).
http://dx.doi.org/10.1021/ac203212g
7.
7. L. Wang, Z. L. Zhang, J. Wdzieczak-Bakala, D. W. Pang, J. M. Liu, and Y. Chen, Lab Chip 11, 4235 (2011).
http://dx.doi.org/10.1039/c1lc20722a
8.
8. Y. Ai, S. W. Joo, Y. T. Jiang, X. C. Xuan, and S. Z. Qian, Biomicrofluidics 3, 022404 (2009).
http://dx.doi.org/10.1063/1.3122594
9.
9. H. Tsutsui and C. M. Ho, Mech. Res. Commun. 36, 92 (2009).
http://dx.doi.org/10.1016/j.mechrescom.2008.08.006
10.
10. N. Pamme, Lab Chip 7, 1644 (2007).
http://dx.doi.org/10.1039/b712784g
11.
11. J. J. Zhu and X. C. Xuan, Biomicrofluidics 5, 024111 (2011).
http://dx.doi.org/10.1063/1.3599883
12.
12. G. D. Chen, F. Fachin, M. Fernandez-Suarez, B. L. Wardle, and M. Toner, Small 7, 1061 (2011).
http://dx.doi.org/10.1002/smll.201002076
13.
13. A. A. S. Bhagat, H. W. Hou, L. D. Li, J. Y. Han, and C. T. Lim, Lab Chip 11, 1870 (2011).
http://dx.doi.org/10.1039/c0lc00633e
14.
14. S. Zheng, H. Lin, J. Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y. C. Tai, J. Chromatogr. A 1162, 154 (2007).
http://dx.doi.org/10.1016/j.chroma.2007.05.064
15.
15. S. Y. Zheng, H. K. Lin, B. Lu, A. Williams, R. Datar, R. J. Cote, and Y. C. Tai, Biomed. Microdevices 13, 203 (2011).
http://dx.doi.org/10.1007/s10544-010-9485-3
16.
16. S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, Biomed. Microdevices 11, 883 (2009).
http://dx.doi.org/10.1007/s10544-009-9305-9
17.
17. D. Wlodkowic and J. M. Cooper, Curr. Opin. Chem. Biol. 14, 556 (2010).
http://dx.doi.org/10.1016/j.cbpa.2010.08.016
18.
18. B. D. Plouffe, L. H. Lewis, and S. K. Murthy, Biomicrofluidics 5, 013413 (2011).
http://dx.doi.org/10.1063/1.3553239
19.
19. Y. Liu, D. Hartono, and K. M. Lim, Biomicrofluidics 6, 012802 (2012).
http://dx.doi.org/10.1063/1.3671062
20.
20. Y. Kang, D. Li, S. A. Kalams, and J. E. Eid, Biomed. Microdevices 10, 243 (2008).
http://dx.doi.org/10.1007/s10544-007-9130-y
21.
21. S. C. Hur, A. J. Mach, and D. Di Carlo, Biomicrofluidics 5, 022206 (2011).
http://dx.doi.org/10.1063/1.3576780
22.
22. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Proc. Natl. Acad. Sci. U.S.A. 104, 18892 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
23.
23. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, Lab Chip 9, 2973 (2009).
http://dx.doi.org/10.1039/b908271a
24.
24. J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, and X. Jiang, Lab Chip 12, 3952 (2012).
http://dx.doi.org/10.1039/c2lc40679a
25.
25. J. A. Schonberg and E. J. Hinch, J. Fluid Mech. 203, 517 (1989).
http://dx.doi.org/10.1017/S0022112089001564
26.
26. E. S. Asmolov, J. Fluid Mech. 381, 63 (1999).
http://dx.doi.org/10.1017/S0022112098003474
27.
27. D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, Phys. Rev. Lett. 102, 094503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.094503
28.
28. B. Yuan, Y. Jin, Y. Sun, D. Wang, J. S. Sun, Z. Wang, W. Zhang, and X. Y. Jiang, Adv. Mater. 24, 890 (2012).
http://dx.doi.org/10.1002/adma.201104589
29.
29. J. Sun, C. C. Stowers, E. M. Boczko, and D. Li, Lab Chip 10, 2986 (2010).
http://dx.doi.org/10.1039/c005029f
30.
30. J. S. Sun, S. K. Vajandar, D. Y. Xu, Y. J. Kang, G. Q. Hu, D. Q. Li, and D. Y. Li, Microfluid. Nanofluid. 6, 589 (2009).
http://dx.doi.org/10.1007/s10404-008-0331-3
31.
31. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, Lab Chip 8, 1906 (2008).
http://dx.doi.org/10.1039/b807107a
32.
32. J. P. Matas, J. F. Morris, and E. Guazzelli, J. Fluid Mech. 515, 171 (2004).
http://dx.doi.org/10.1017/S0022112004000254
33.
33. D. R. Gossett and D. Di Carlo, Anal. Chem. 81, 8459 (2009).
http://dx.doi.org/10.1021/ac901306y
34.
34. S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo, Lab Chip 11, 912 (2011).
http://dx.doi.org/10.1039/c0lc00595a
35.
35. J. P. Gleghorn, E. D. Pratt, D. Denning, H. Liu, N. H. Bander, S. T. Tagawa, D. M. Nanus, P. A. Giannakakou, and B. J. Kirby, Lab Chip 10, 27 (2010).
http://dx.doi.org/10.1039/b917959c
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4774311
Loading
/content/aip/journal/bmf/7/1/10.1063/1.4774311
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4774311
2013-01-07
2014-07-24

Abstract

In this work, we propose a rapid and continuous rare tumor cell separation based on hydrodynamic effects in a label-free manner. The competition between the inertial lift force and Dean drag force inside a double spiral microchannel results in the size-based cell separation of large tumor cells and small blood cells. The mechanism of hydrodynamic separation in curved microchannel was investigated by a numerical model. Experiments with binary mixture of 5- and 15-μm-diameter polystyrene particles using the double spiral channel showed a separation purity of more than 95% at the flow rate above 30 ml/h. High throughput (2.5 × 108 cells/min) and efficient cell separation (more than 90%) of spiked HeLa cells and 20 × diluted blood cells was also achieved by the double spiral channel.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4774311.html;jsessionid=4usr0us5sqo5s.x-aip-live-02?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4774311&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4774311
10.1063/1.4774311
SEARCH_EXPAND_ITEM