1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4780062
1.
1. H. C. Engell, Ann. Surg. 149(4), 457461 (1959).
http://dx.doi.org/10.1097/00000658-195904000-00001
2.
2. G. C. Finkel and G. H. Tishkoff, N. Engl. J. Med. 262, 187188 (1960).
http://dx.doi.org/10.1056/NEJM196001282620407
3.
3. G. C. Ejeckam, S. K. Sogbein, and W. A. McLeish, Can. Med. Assoc. J. 120(3), 336338 (1979).
4.
4. A. A. Ross, B. W. Cooper, H. M. Lazarus, W. Mackay, T. J. Moss, N. Ciobanu, M. S. Tallman, M. J. Kennedy, N. E. Davidson, D. Sweet et al., Blood 82(9), 26052610 (1993).
5.
5. B. Brandt, R. Junker, C. Griwatz, S. Heidl, O. Brinkmann, A. Semjonow, G. Assmann, and K. S. Zanker, Cancer Res. 56(20), 45564561 (1996).
6.
6. U. Bilkenroth, H. Taubert, D. Riemann, U. Rebmann, H. Heynemann, and A. Meye, Int. J. Cancer 92(4), 577582 (2001).
http://dx.doi.org/10.1002/ijc.1217
7.
7. B. Molnar, A. Ladanyi, L. Tanko, L. Sreter, and Z. Tulassay, Clin. Cancer Res. 7(12), 40804085 (2001).
8.
8. M. Naoe, Y. Ogawa, J. Morita, K. Omori, K. Takeshita, T. Shichijyo, T. Okumura, A. Igarashi, A. Yanaihara, S. Iwamoto, T. Fukagai, A. Miyazaki, and H. Yoshida, Cancer 109(7), 14391445 (2007).
http://dx.doi.org/10.1002/cncr.22543
9.
9. J. C. Pruitt, A. W. Hilberg, and R. F. Kaiser, N. Engl. J. Med. 259(24), 11611164 (1958).
http://dx.doi.org/10.1056/NEJM195812112592404
10.
10. W. I. Onuigbo, Cancer Res. 30(12), 28212826 (1970).
11.
11. M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, N. Engl. J. Med. 351(8), 781791 (2004).
http://dx.doi.org/10.1056/NEJMoa040766
12.
12. J. S. de Bono, H. I. Scher, R. B. Montgomery, C. Parker, M. C. Miller, H. Tissing, G. V. Doyle, L. W. Terstappen, K. J. Pienta, and D. Raghavan, Clin. Cancer Res. 14(19), 63026309 (2008).
http://dx.doi.org/10.1158/1078-0432.CCR-08-0872
13.
13. M. Cristofanilli, D. F. Hayes, G. T. Budd, M. J. Ellis, A. Stopeck, J. M. Reuben, G. V. Doyle, J. Matera, W. J. Allard, M. C. Miller, H. A. Fritsche, G. N. Hortobagyi, and L. W. Terstappen, J. Clin. Oncol. 23(7), 14201430 (2005).
http://dx.doi.org/10.1200/JCO.2005.08.140
14.
14. M. Yu, D. T. Ting, S. L. Stott, B. S. Wittner, F. Ozsolak, S. Paul, J. C. Ciciliano, M. E. Smas, D. Winokur, A. J. Gilman, M. J. Ulman, K. Xega, G. Contino, B. Alagesan, B. W. Brannigan, P. M. Milos, D. P. Ryan, L. V. Sequist, N. Bardeesy, S. Ramaswamy, M. Toner, S. Maheswaran, and D. A. Haber, Nature 487(7408), 510513 (2012).
http://dx.doi.org/10.1038/nature11217
15.
15. J. Kling, Nat. Biotechnol. 30(7), 578580 (2012).
http://dx.doi.org/10.1038/nbt.2295
16.
16. E. S. Lianidou and A. Markou, Clin. Chem. 57(9), 12421255 (2011).
http://dx.doi.org/10.1373/clinchem.2011.165068
17.
17. D. C. Danila, M. Fleisher, and H. I. Scher, Clin. Cancer Res. 17(12), 39033912 (2011).
http://dx.doi.org/10.1158/1078-0432.CCR-10-2650
18.
18. S. Maheswaran and D. A. Haber, Curr. Opin. Genet. Dev. 20(1), 9699 (2010).
http://dx.doi.org/10.1016/j.gde.2009.12.002
19.
19. M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. A. Haber, J. Cell Biol. 192(3), 373382 (2011).
http://dx.doi.org/10.1083/jcb.201010021
20.
20. A. van de Stolpe, K. Pantel, S. Sleijfer, L. W. Terstappen, and J. M. J. den Toonder, Cancer Res. 71(18), 59555960 (2011).
http://dx.doi.org/10.1158/0008-5472.CAN-11-1254
21.
21. B. Mostert, S. Sleijfer, J. A. Foekens, and J. W. Gratama, Cancer Treat Rev. 35(5), 463474 (2009).
http://dx.doi.org/10.1016/j.ctrv.2009.03.004
22.
22. Z. S. Lalmahomed, J. Kraan, J. W. Gratama, B. Mostert, S. Sleijfer, and C. Verhoef, J. Clin. Oncol. 28(17), E288E289 (2010).
http://dx.doi.org/10.1200/JCO.2010.28.2764
23.
23. Z. F. Yang, P. Ngai, D. W. Ho, W. C. Yu, M. N. P. Ng, C. K. Lau, M. L. Y. Li, K. H. Tam, C. T. Lam, R. T. P. Poon, and S. T. Fan, Hepatology 47(3), 919928 (2008).
http://dx.doi.org/10.1002/hep.22082
24.
24. R. Gertler, R. Rosenberg, K. Fuehrer, M. Dahm, H. Nekarda and J. R. Siewert, in Molecular Staging of Cancer, edited by H. Allgayer, M. M. Heiss, and F. W. Schildberg (Springer-Verlag Berlin, Berlin, 2003), Vol. 162, pp. 149155.
25.
25. L.-J. Wu, Y.-D. Pan, X.-Y. Pei, H. Chen, S. Nguyen, A. Kashyap, J. Liu and J. Wu, Cancer Lett. 326(1), 1722 (2012).
http://dx.doi.org/10.1016/j.canlet.2012.07.024
26.
26. M. Balic, N. Dandachi, G. Hofmann, H. Samonigg, H. Loibner, A. Obwaller, A. van der Kooi, A. G. J. Tibbe, G. V. Doyle, L. W. M. M. Terstappen, and T. Bauernhofer, Cytom. Part B-Clin. Cytom. 68(1), 2530 (2005).
http://dx.doi.org/10.1002/cyto.b.20065
27.
27. H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, IEEE Trans. Nanobiosci. 3(4), 251256 (2004).
http://dx.doi.org/10.1109/TNB.2004.837903
28.
28. Z. Z. Chen, S. Y. Zhang, Z. M. Tang, P. F. Xiao, X. Y. Guo, and Z. H. Lu, Surf. Interface Anal. 38(6), 9961003 (2006).
http://dx.doi.org/10.1002/sia.2344
29.
29. M. S. Kim, T. S. Sim, Y. J. Kim, S. S. Kim, H. Jeong, J.-M. Park, H.-S. Moon, S. I. Kim, O. Gurel, S. S. Lee, J.-G. Lee, and J. C. Park, Lab Chip 12(16), 28742880 (2012).
http://dx.doi.org/10.1039/C2LC40065K
30.
30. S. M. McFaul, B. K. Lin, and H. S. Ma, Lab Chip 12(13), 23692376 (2012).
http://dx.doi.org/10.1039/c2lc21045b
31.
31. A. Williams, M. Balic, R. Datar, and R. Cote, in Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer, edited by M. Ignatiadis, C. Sotiriou and K. Pantel (Springer, Berlin/Heidelberg, 2012), pp. 8795.
32.
32. P. Rostagno, J. L. Moll, J. C. Bisconte, and C. Caldani, Anticancer Res. 17(4A), 24812485 (1997).
33.
33. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schutze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans, B. Lacour, C. Brechot, and P. Paterlini-Brechot, Am. J. Pathol. 156(1), 5763 (2000).
http://dx.doi.org/10.1016/S0002-9440(10)64706-2
34.
34. P. Pinzani, B. Salvadori, L. Simi, S. Bianchi, V. Distante, L. Cataliotti, M. Pazzagli, and C. Orlando, Hum. Pathol. 37(6), 711718 (2006).
http://dx.doi.org/10.1016/j.humpath.2006.01.026
35.
35. J. M. Hou, M. Krebs, T. Ward, R. Sloane, L. Priest, A. Hughes, G. Clack, M. Ranson, F. Blackhall, and C. Dive, Am. J. Pathol 178(3), 989996 (2011).
http://dx.doi.org/10.1016/j.ajpath.2010.12.003
36.
36. V. De Giorgi, P. Pinzani, F. Salvianti, J. Panelos, M. Paglierani, A. Janowska, M. Grazzini, J. Wechsler, C. Orlando, M. Santucci, T. Lotti, M. Pazzagli, and D. Massi, J. Invest. Dermatol. 130(10), 24402447 (2010).
http://dx.doi.org/10.1038/jid.2010.141
37.
37. I. Desitter, B. S. Guerrouahen, N. Benali-Furet, J. Wechsler, P. A. Janne, Y. A. Kuang, M. Yanagita, L. L. Wang, J. A. Berkowitz, R. J. Distel, and Y. E. Cayre, Anticancer Res. 31(2), 427441 (2011).
38.
38. S. Zheng, H. Lin, J. -Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y. -C. Tai, J. Chromatogr. A 1162(2), 154161 (2007).
http://dx.doi.org/10.1016/j.chroma.2007.05.064
39.
39. H. K. Lin, S. Y. Zheng, A. J. Williams, M. Balic, S. Groshen, H. I. Scher, M. Fleisher, W. Stadler, R. H. Datar, Y. C. Tai, and R. J. Cote, Clin. Cancer Res. 16(20), 50115018 (2010).
http://dx.doi.org/10.1158/1078-0432.CCR-10-1105
40.
40. S. Zheng, H. Lin, B. Lu, A. Williams, R. Datar, R. Cote, and Y.-C. Tai, Biomed. Microdevices 13(1), 203213 (2011).
http://dx.doi.org/10.1007/s10544-010-9485-3
41.
41. M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, Anal. Chem. 82(15), 66296635 (2010).
http://dx.doi.org/10.1021/ac101222x
42.
42. L. S. Lim, M. Hu, M. C. Huang, W. C. Cheong, A. T. L. Gan, X. L. Looi, S. M. Leong, E. S.-C. Koay, and M.-H. Li, Lab Chip 12(21), 43884396 (2012).
http://dx.doi.org/10.1039/C2LC20750H
43.
43. C. Iliescu, H. Taylor, M. Avram, J. Miao, and S. Franssila, Biomicrofluidics 6(1), 016505016516 (2012).
http://dx.doi.org/10.1063/1.3689939
44.
44. T. Y. Chang, V. G. Yadav, S. De Leo, A. Mohedas, B. Rajalingam, C.-L. Chen, S. Selvarasah, M. R. Dokmeci, and A. Khademhosseini, Langmuir 23(23), 1171811725 (2007).
http://dx.doi.org/10.1021/la7017049
45.
45. G. E. Loeb, A. E. Walker, S. Uematsu, and B. W. Konigsmark, J. Biomed. Mater. Res. 11(2), 195210 (1977).
http://dx.doi.org/10.1002/jbm.820110206
46.
46. T. Xu, B. Lu, Y. C. Tai, and A. Goldkorn, Cancer Res. 70(16), 64206426 (2010).
http://dx.doi.org/10.1158/0008-5472.CAN-10-0686
47.
47. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, Nat. Nanotechnol. 2(12), 780783 (2007).
http://dx.doi.org/10.1038/nnano.2007.388
48.
48. S. E. Cross, Y. S. Jin, J. Tondre, R. Wong, J. Rao, and J. K. Gimzewski, Nanotechnology 19(38), 384003 (2008).
http://dx.doi.org/10.1088/0957-4484/19/38/384003
49.
49. W. Zhang, K. Kai, D. S. Choi, T. Iwamoto, Y. H. Nguyen, H. Wong, M. D. Landis, N. T. Ueno, J. Chang, and L. Qin, Proc. Natl. Acad. Sci. U.S.A. 109(46), 1870718712 (2012).
http://dx.doi.org/10.1073/pnas.1209893109
50.
50. S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo, Lab Chip 11(5), 912920 (2011).
http://dx.doi.org/10.1039/c0lc00595a
51.
51. S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, Biomed. Microdevices 11(4), 883892 (2009).
http://dx.doi.org/10.1007/s10544-009-9305-9
52.
52. S. J. Tan, R. L. Lakshmi, P. F. Chen, W. T. Lim, L. Yobas, and C. T. Lim, Biosens. Bioelectron. 26(4), 17011705 (2010).
http://dx.doi.org/10.1016/j.bios.2010.07.054
53.
53. D. Di Carlo, Lab Chip 9(21), 30383046 (2009).
http://dx.doi.org/10.1039/b912547g
54.
54. J. Seo, M. H. Lean, and A. Kole, J. Chromatogr. A 1162(2), 126131 (2007).
http://dx.doi.org/10.1016/j.chroma.2007.05.110
55.
55. J. Seo, M. H. Lean, and A. Kole, Appl. Phys. Lett. 91(3), 033901 (2007).
http://dx.doi.org/10.1063/1.2756272
56.
56. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, Lab Chip 9(20), 29732980 (2009).
http://dx.doi.org/10.1039/b908271a
57.
57. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, Proc. Natl. Acad. Sci. U. S. A. 104(48), 1889218897 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
58.
58. H. Amini, E. Sollier, W. M. Weaver, and D. Di Carlo, Proc. Natl. Acad. Sci. U. S. A. 109(29), 1159311598 (2012).
http://dx.doi.org/10.1073/pnas.1207550109
59.
59. W. C. Lee, A. A. S. Bhagat, S. Huang, K. J. Van Vliet, J. Han, and C. T. Lim, Lab Chip 11(7), 13591367 (2011).
http://dx.doi.org/10.1039/c0lc00579g
60.
60. J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, and X. Jiang, Lab Chip 12(20), 39523960 (2012).
http://dx.doi.org/10.1039/C2LC40679A
61.
61. S. C. Hur, A. J. Mach, and D. Di Carlo, Biomicrofluidics 5(2), 022206 (2011).
http://dx.doi.org/10.1063/1.3576780
62.
62. A. A. S. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Y. Han, Lab Chip 11(11), 18701878 (2011).
http://dx.doi.org/10.1039/c0lc00633e
63.
63. T. Tanaka, T. Ishikawa, K. Numayama-Tsuruta, Y. Imai, H. Ueno, T. Yoshimoto, N. Matsuki, and T. Yamaguchi, Biomed. Microdevices 14(1), 2533 (2012).
http://dx.doi.org/10.1007/s10544-011-9582-y
64.
64. T. Tanaka, T. Ishikawa, K. Numayama-Tsuruta, Y. Imai, H. Ueno, N. Matsuki, and T. Yamaguchi, Lab Chip (2012).
65.
65. K.–A. Hyun, K. Kwon, H. Han, S.-I. Kim, and H.-I. Jung, Biosens. Bioelectron. 40(1), 206212 (2013).
http://dx.doi.org/10.1016/j.bios.2012.07.021
66.
66. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, Nature 450(7173), 12351239 (2007).
http://dx.doi.org/10.1038/nature06385
67.
67. S. L. Stott, C. H. Hsu, D. I. Tsukrov, M. Yu, D. T. Miyamoto, B. A. Waltman, S. M. Rothenberg, A. M. Shah, M. E. Smas, G. K. Korir, F. P. Floyd, A. J. Gilman, J. B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L. V. Sequist, R. J. Lee, K. J. Isselbacher, S. Maheswaran, D. A. Haber, and M. Toner, Proc. Natl. Acad. Sci. U. S. A. 107(43), 1839218397 (2010).
http://dx.doi.org/10.1073/pnas.1012539107
68.
68. X. Zheng, L. S.-L. Cheung, J. A. Schroeder, L. Jiang, and Y. Zohar, Lab Chip 11(19), 32693276 (2011).
http://dx.doi.org/10.1039/c1lc20331b
69.
69. P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, and T. Laurell, Anal. Chem. 84(18), 79547962 (2012).
http://dx.doi.org/10.1021/ac301723s
70.
70. R. Pethig, Biomicrofluidics 4(2), 022811 (2010).
http://dx.doi.org/10.1063/1.3456626
71.
71. M. Kersaudy-Kerhoas, R. Dhariwal, and M. P. Y. Desmulliez, IET Nanobiotechnol. 2(1), 113 (2008).
http://dx.doi.org/10.1049/iet-nbt:20070025
72.
72. C. Zhang, K. Khoshmanesh, A. Mitchell, and K. Kalantar-zadeh, Anal. Bioanal. Chem. 396(1), 401420 (2010).
http://dx.doi.org/10.1007/s00216-009-2922-6
73.
73. R. Pethig, A. Menachery, S. Pells, and P. De Sousa, J. Biomed. Biotechnol. 2010, 182581 (2010).
http://dx.doi.org/10.1155/2010/182581
74.
74. R. Martinez-Duarte, Electrophoresis 33(21), 31103132 (2012).
http://dx.doi.org/10.1002/elps.201200242
75.
75. P. R. C. Gascoyne and J. Vykoukal, Electrophoresis 23(13), 19731983 (2002).
http://dx.doi.org/10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1
76.
76. G. L. Xu, F. E. H. Tay, G. Tresset, F. S. Iliescu, A. Avram, and C. Iliescu, Inf. Midem-J. Microelectron. Electron. Compon. Mater. 40(4), 253262 (2010).
77.
77. B. Cetin and D. Q. Li, Electrophoresis 32(18), 24102427 (2011).
http://dx.doi.org/10.1002/elps.201100167
78.
78. K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, Biosens. Bioelectron. 26(5), 18001814 (2011).
http://dx.doi.org/10.1016/j.bios.2010.09.022
79.
79. M. M. Meighan, S. J. R. Staton, and M. A. Hayes, Electrophoresis 30(5), 852865 (2009).
http://dx.doi.org/10.1002/elps.200800614
80.
80. C. Iliescu, G. Xu, F. C. Loe, P. L. Ong, and F. E. H. Tay, Electrophoresis 28(7), 11071114 (2007).
http://dx.doi.org/10.1002/elps.200600431
81.
81. K. H. Kang, Y. Kang, X. Xuan, and D. Li, Electrophoresis 27(3), 694702 (2006).
http://dx.doi.org/10.1002/elps.200500558
82.
82. S. Patel, D. Showers, P. Vedantam, T.-R. Tzeng, S. Qian, and X. Xuan, Biomicrofluidics 6(3), 034102034112 (2012).
http://dx.doi.org/10.1063/1.4732800
83.
83. C. Iliescu, G. L. Xu, V. Samper, and F. E. H. Tay, J. Micromech. Microeng. 15(3), 494500 (2005).
http://dx.doi.org/10.1088/0960-1317/15/3/009
84.
84. I. -F. Cheng, H. -C. Chang, D. Hou, and H. -C. Chang, Biomicrofluidics 1(2), 021503 (2007).
http://dx.doi.org/10.1063/1.2723669
85.
85. L. A. Flanagan, J. Lu, L. Wang, S. A. Marchenko, N. L. Jeon, A. P. Lee, and E. S. Monuki, Stem Cells 26(3), 656665 (2008).
http://dx.doi.org/10.1634/stemcells.2007-0810
86.
86. Z. Gagnon, J. Mazur, and H. -C. Chang, Biomicrofluidics 3(4), 044108 (2009).
http://dx.doi.org/10.1063/1.3257857
87.
87. C. Iliescu, G. Tresset, and G. L. Xu, Biomicrofluidics 3(4), 044104 (2009).
http://dx.doi.org/10.1063/1.3251125
88.
88. D. Choudhury, X. J. Mo, C. Iliescu, L. L. Tan, W. H. Tong, and H. Yu, Biomicrofluidics 5(2), 022203 (2011).
http://dx.doi.org/10.1063/1.3593407
89.
89. L.-C. Hsiung, C.-H. Yang, C.-L. Chiu, C.-L. Chen, Y. Wang, H. Lee, J.-Y. Cheng, M.-C. Ho, and A. M. Wo, Biosens. Bioelectron. 24(4), 869875 (2008).
http://dx.doi.org/10.1016/j.bios.2008.07.027
90.
90. D. R. Albrecht, G. H. Underhill, A. Mendelson, and S. N. Bhatia, Lab Chip 7(6), 702709 (2007).
http://dx.doi.org/10.1039/b701306j
91.
91. C. Iliescu, G. Tresset, and G. L. Xu, Appl. Phys. Lett. 90(23), 234104 (2007).
http://dx.doi.org/10.1063/1.2747187
92.
92. L. M. Yu, C. Iliescu, G. L. Xu, and F. E. H. Tay, J. Microelectromech. Syst. 16(5), 11201129 (2007).
http://dx.doi.org/10.1109/JMEMS.2007.901136
93.
93. M. P. Hughes, Electrophoresis 23(16), 25692582 (2002).
http://dx.doi.org/10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M
94.
94. T. B. Jones, Electromechanics of Particles (Cambridge University Press, 1995).
95.
95. B. Çetin, Y. Kang, Z. Wu, and D. Li, Electrophoresis 30(5), 766772 (2009).
http://dx.doi.org/10.1002/elps.200800464
96.
96. C. Iliescu, G. L. Xu, P. L. Ong, and K. J. Leck, J. Micromech. Microeng. 17(7), S128S136 (2007).
http://dx.doi.org/10.1088/0960-1317/17/7/S10
97.
97. C. P. Jen and W. F. Chen, Biomicrofluidics 5(4), 044105 (2011).
http://dx.doi.org/10.1063/1.3658644
98.
98. S. Bunthawin, P. Wanichapichart, A. Tuantranont, and H. G. L. Coster, Biomicrofluidics 4(1), 014102014113 (2010).
http://dx.doi.org/10.1063/1.3294082
99.
99. X. Zhu, H. Yi, and Z. Ni, Biomicrofluidics 4(1), 013202013214 (2010).
http://dx.doi.org/10.1063/1.3279788
100.
100. P. Y. Chiou, A. T. Ohta, and M. C. Wu, Nature 436(7049), 370372 (2005).
http://dx.doi.org/10.1038/nature03831
101.
101. M. D. Vahey and J. Voldman, Anal. Chem. 81(7), 24462455 (2009).
http://dx.doi.org/10.1021/ac8019575
102.
102. P. R. C. Gascoyne, W. B. Wang, Y. Huang and F. F. Becker, presented at the Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE, 1995 (unpublished).
103.
103. F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. C. Gascoyne, Proc. Natl. Acad. Sci. U. S. A. 92(3), 860864 (1995).
http://dx.doi.org/10.1073/pnas.92.3.860
104.
104. F. F. Becker, X. B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. R. C. Gascoyne, J. Phys. D: Appl. Phys. 27(12), 26592662 (1994).
http://dx.doi.org/10.1088/0022-3727/27/12/030
105.
105. J. An, J. Lee, S. H. Lee, J. Park, and B. Kim, Anal. Bioanal. Chem. 394(3), 801809 (2009).
http://dx.doi.org/10.1007/s00216-009-2743-7
106.
106. L. M. Broche, N. Bhadal, M. P. Lewis, S. Porter, M. P. Hughes, and F. H. Labeed, Oral Oncol. 43(2), 199203 (2007).
http://dx.doi.org/10.1016/j.oraloncology.2006.02.012
107.
107. F. Yang, X. M. Yang, H. Jiang, P. Bulkhaults, P. Wood, W. Hrushesky, and G. R. Wang, Biomicrofluidics 4(1), 013204 (2010).
http://dx.doi.org/10.1063/1.3279786
108.
108. C. P. Jen and H. H. Chang, Biomicrofluidics 5(3), 034101 (2011).
http://dx.doi.org/10.1063/1.3609263
109.
109. A. Salmanzadeh, H. Kittur, M. B. Sano, P. C. Roberts, E. M. Schmelz, and R. V. Davalos, Biomicrofluidics 6(2), 024104 (2012).
http://dx.doi.org/10.1063/1.3699973
110.
110. A. C. Sabuncu, J. A. Liu, S. J. Beebe, and A. Beskok, Biomicrofluidics 4(2), 021101 (2010).
http://dx.doi.org/10.1063/1.3447702
111.
111. L. Wu, L.–Y. L. Yung, and K.-M. Lim, Biomicrofluidics 6(1), 014113 (2012).
http://dx.doi.org/10.1063/1.3690470
112.
112. A. Alazzam, I. Stiharu, R. Bhat, and A. N. Meguerditchian, Electrophoresis 32(11), 13271336 (2011).
http://dx.doi.org/10.1002/elps.201000625
113.
113. J. Cheng, E. L. Sheldon, L. Wu, M. J. Heller, and J. P. O'Connell, Anal. Chem. 70(11), 23212326 (1998).
http://dx.doi.org/10.1021/ac971274g
114.
114. E. G. Cen, C. Dalton, Y. L. Li, S. Adamia, L. M. Pilarski, and K. Kaler, J. Microbiol. Methods 58(3), 387401 (2004).
http://dx.doi.org/10.1016/j.mimet.2004.05.002
115.
115. V. Gupta, I. Jafferji, M. Garza, V. O. Melnikova, D. K. Hasegawa, R. Pethig, and D. W. Davis, Biomicrofluidics 6(2), 024133 (2012).
http://dx.doi.org/10.1063/1.4731647
116.
116. P. R. C. Gascoyne, J. Noshari, T. J. Anderson, and F. F. Becker, Electrophoresis 30(8), 13881398 (2009).
http://dx.doi.org/10.1002/elps.200800373
117.
117. S. Shim, P. Gascoyne, J. Noshari, and K. S. Hale, Integr. Biol. 3(8), 850862 (2011).
http://dx.doi.org/10.1039/c1ib00032b
118.
118. H. S. Moon, K. Kwon, S. I. Kim, H. Han, J. Sohn, S. Lee, and H. I. Jung, Lab Chip 11(6), 11181125 (2011).
http://dx.doi.org/10.1039/c0lc00345j
119.
119. C. Iliescu, L. M. Yu, G. L. Xu, and F. E. H. Tay, J. Microelectromech. Syst. 15(6), 15061513 (2006).
http://dx.doi.org/10.1109/JMEMS.2006.883567
120.
120. F. E. H. Tay, L. M. Yu, A. J. Pang, and C. Iliescu, Electrochim. Acta 52(8), 28622868 (2007).
http://dx.doi.org/10.1016/j.electacta.2006.09.022
121.
121. A. Ramos, H. Morgan, N. G. Green and A. Castellanos, J. Phys. D 31 (18), 23382353 (1998).
http://dx.doi.org/10.1088/0022-3727/31/18/021
122.
122. J. Voldman, Annu. Rev. Biomed. Eng. 8, 425454 (2006).
http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095739
123.
123. T. Y. Tsong, Biochim. Biophys. Acta 1113(1), 5370 (1992).
http://dx.doi.org/10.1016/0304-4157(92)90034-8
124.
124. W. A. Catterall, Annu. Rev. Biochem. 64, 493531 (1995).
http://dx.doi.org/10.1146/annurev.bi.64.070195.002425
125.
125. C. Iliescu, D. P. Poenar, and S. T. Selvan, J. Micromech. Microeng. 20(2), 022001 (2010).
http://dx.doi.org/10.1088/0960-1317/20/2/022001
126.
126. H. E. Ayliffe, A. B. Frazier, and R. D. Rabbitt, J. Microelectromech. Syst. 8(1), 5057 (1999).
http://dx.doi.org/10.1109/84.749402
127.
127. A. C. Sabuncu, J. Zhuang, J. F. Kolb, and A. Beskok, Biomicrofluidics 6(3), 034103034115 (2012).
http://dx.doi.org/10.1063/1.4737121
128.
128. D. P. Poenar, C. Iliescu, M. Carp, A. J. Pang, and K. J. Leck, Sens. Actuators, A 139(1–2), 162171 (2007).
http://dx.doi.org/10.1016/j.sna.2006.10.009
129.
129. C. Iliescu, D. P. Poenar, M. Carp, and F. C. Loe, Sens. Actuators B 123(1), 168176 (2007).
http://dx.doi.org/10.1016/j.snb.2006.08.009
130.
130. T. Sun and H. Morgan, Microfluid. Nanofluid. 8(4), 423443 (2010).
http://dx.doi.org/10.1007/s10404-010-0580-9
131.
131. Q. Tan, G. A. Ferrier, B. K. Chen, C. Wang, and Y. Sun, Biomicrofluidics 6(3), 034112034113 (2012).
http://dx.doi.org/10.1063/1.4746249
132.
132. G. Kang, S. K. Yoo, H. I. Kim, and J. H. Lee, IEEE Sens. J. 12(5), 10841089 (2012).
http://dx.doi.org/10.1109/JSEN.2011.2167227
133.
133. D. Holmes, D. Pettigrew, C. H. Reccius, J. D. Gwyer, C. van Berkel, J. Holloway, D. E. Davies, and H. Morgan, Lab Chip 9(20), 28812889 (2009).
http://dx.doi.org/10.1039/b910053a
134.
134. A. Han, L. Yang, and A. B. Frazier, Clin. Cancer Res. 13(1), 139143 (2007).
http://dx.doi.org/10.1158/1078-0432.CCR-06-1346
135.
135. K.-H. Han, A. Han, and A. B. Frazier, Biosens. Bioelectron. 21(10), 19071914 (2006).
http://dx.doi.org/10.1016/j.bios.2006.01.024
136.
136. S. K. Arya, K. C. Lee, D. u. B. Dah'alan Daniel, and A. R. A. Rahman, Lab Chip 12(13), 23622368 (2012).
http://dx.doi.org/10.1039/c2lc21174b
137.
137. R. de la Rica, S. Thompson, A. Baldi, C. Fernandez-Sanchez, C. M. Drain, and H. Matsui, Anal. Chem. 81(24), 1016710171 (2009).
http://dx.doi.org/10.1021/ac9021049
138.
138. W. Asghar, Y. Wan, A. Ilyas, R. Bachoo, Y. T. Kim, and S. M. Iqbal, Lab Chip 12(13), 23452352 (2012).
http://dx.doi.org/10.1039/c2lc21012f
139.
139. D. Melville, F. Paul, and S. Roath, Nature 255(5511), 706 (1975).
http://dx.doi.org/10.1038/255706a0
140.
140. J. Svoboda, J. Magn. Magn. Mater. 220(2–3), 103105 (2000).
http://dx.doi.org/10.1016/S0304-8853(00)00479-0
141.
141. M. Zborowski, G. R. Ostera, L. R. Moore, S. Milliron, J. J. Chalmers, and A. N. Schechter, Biophys. J. 84(4), 26382645 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)75069-3
142.
142. D. W. Inglis, R. Riehn, R. H. Austin, and J. C. Sturm, Appl. Phys. Lett. 85(21), 50935095 (2004).
http://dx.doi.org/10.1063/1.1823015
143.
143. C. Iliescu, G. L. Xu, E. Barbarini, M. Avram, and A. Avram, Microsyst. Technol. 15(8), 11571162 (2009).
http://dx.doi.org/10.1007/s00542-008-0718-9
144.
144. K. H. Han and A. B. Frazier, J. Appl. Phys. 96(10), 57975802 (2004).
http://dx.doi.org/10.1063/1.1803628
145.
145. Q. Ramadan, C. Yu, V. Samper, and D. P. Poenar, Appl. Phys. Lett. 88(3), 032501032501 (2006).
http://dx.doi.org/10.1063/1.2149150
146.
146. B.-Y. Qu, Z.-Y. Wu, F. Fang, Z.-M. Bai, D.-Z. Yang, and S.-K. Xu, Anal. Bioanal. Chem. 392(7–8), 13171324 (2008).
http://dx.doi.org/10.1007/s00216-008-2382-4
147.
147. J. Jung and K.-H. Han, Appl. Phys. Lett. 93(22), 223902223903 (2008).
http://dx.doi.org/10.1063/1.3036898
148.
148. A. Adamo, A. Sharei, L. Adamo, B. Lee, S. Mao, and K. F. Jensen, Anal. Chem. 84(15), 64386443 (2012).
http://dx.doi.org/10.1021/ac300264v
149.
149. F. Farace, C. Massard, N. Vimond, F. Drusch, N. Jacques, F. Billiot, A. Laplanche, A. Chauchereau, L. Lacroix, D. Planchard, S. Le Moulec, F. Andre, K. Fizazi, J. C. Soria, and P. Vielh, Br. J. Cancer 105(6), 847853 (2011).
http://dx.doi.org/10.1038/bjc.2011.294
150.
150. I. K. Dimov, G. Kijanka, Y. Park, J. Ducree, T. Kang, and L. P. Lee, Lab Chip 11(16), 27012710 (2011).
http://dx.doi.org/10.1039/c1lc20105k
151.
151. J. H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, and D. E. Ingber, Lab Chip 12(12), 21752181 (2012).
http://dx.doi.org/10.1039/c2lc40072c
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4780062
Loading
/content/aip/journal/bmf/7/1/10.1063/1.4780062
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4780062
2013-01-24
2014-11-01

Abstract

This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to “marker-based” techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4780062.html;jsessionid=c30jkegb0ktcb.x-aip-live-03?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4780062&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4780062
10.1063/1.4780062
SEARCH_EXPAND_ITEM