1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4788914
1.
1. K. Pantel, R. Brakenhoff, and B. Brandt, Nat. Rev. Cancer 8(5), 329340 (2008).
http://dx.doi.org/10.1038/nrc2375
2.
2. I. Georgakoudi, N. Solban, J. Novak, W. L. Rice, X. Wei, T. Hasan, and C. P. Lin, Cancer Res. 64(15), 50445047 (2004).
http://dx.doi.org/10.1158/0008-5472.CAN-04-1058
3.
3. W. J. Allard, J. Matera, M. C. Miller, M. Repollet, M. C. Connelly, C. Rao, A. G. J. Tibbe, J. W. Uhr, and L. W. M. M. Terstappen, Clin. Cancer Res. 10(20), 68976904 (2004).
http://dx.doi.org/10.1158/1078-0432.CCR-04-0378
4.
4. S. I. Kim and H. I. Jung, J. Breast Cancer 13(2), 125131 (2010).
http://dx.doi.org/10.4048/jbc.2010.13.2.125
5.
5. H. Kahn, A. Presta, L. Yang, J. Blondal, M. Trudeau, L. Lickley, C. Holloway, D. McCready, D. Maclean, and A. Marks, Breast Cancer Res. Treat. 86(3), 237247 (2004).
http://dx.doi.org/10.1023/B:BREA.0000036897.92513.72
6.
6. V. Zieglschmid, C. Hollmann, and O. Böcher, Crit. Rev. Cl. Lab. Sci. 42(2),155196 (2005).
http://dx.doi.org/10.1080/10408360590913696
7.
7. R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, Proc. Natl. Acad. Sci. USA 101(29), 1050110504 (2004).
http://dx.doi.org/10.1073/pnas.0404036101
8.
8. K. Han, A. Han, and A. Frazier, Biosens. Bioelectron. 21(10), 19071914 (2006).
http://dx.doi.org/10.1016/j.bios.2006.01.024
9.
9. K. Han, S. Han, and A. Frazier, Lab Chip 9(20), 29582964 (2009).
http://dx.doi.org/10.1039/b909753h
10.
10. S. Nagrath, L. Sequist, S. Maheswaran, D. Bell, D. Irimia, L. Ulkus, M. Smith, E. Kwak, S. Digumarthy, and A. Muzikansky, Nature 450(7173), 12351239 (2007).
http://dx.doi.org/10.1038/nature06385
11.
11. S. Wang, K. Liu, J. Liu, Z. T. F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H. R. Tseng, Angew. Chem. Int. Ed. 50(13), 30843088 (2011).
http://dx.doi.org/10.1002/anie.201005853
12.
12. A. Adams, P. Okagbare, J. Feng, M. Hupert, D. Patterson, J. Gottert, R. McCarley, D. Nikitopoulos, and M. Murphy, S. Soper, J. Am. Chem. Soc. 130(27), 86338641 (2008).
http://dx.doi.org/10.1021/ja8015022
13.
13. G. Deng, M. Herrler, D. Burgess, E. Manna, D. Krag, and J. Burke, Breast Cancer Res. 10(4), R69 (2008).
http://dx.doi.org/10.1186/bcr2131
14.
14. H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, J. Chromatogr. A 1216(47), 82898295 (2009).
http://dx.doi.org/10.1016/j.chroma.2009.05.036
15.
15. S. Velugotla, S. Pells, H. K. Mjoseng, C. R. E. Duffy, S. Smith, P. De Sousa, and R. Pethig, Biomicrofluidics 6(4), 044113 (2012).
http://dx.doi.org/10.1063/1.4771316
16.
16. N. Piacentini, G. Mernier, R. Tornay, and P. Renaud, Biomicrofluidics 5(3), 034122 (2011).
http://dx.doi.org/10.1063/1.3640045
17.
17. V. Gupta, I. Jafferji, M. Garza, V. O. Melnikova, D. K. Hasegawa, R. Pethig, and D. W. Davis, Biomicrofluidics 6(2), 024133 (2012).
http://dx.doi.org/10.1063/1.4731647
18.
18. D. Di Carlo, Lab Chip 9(21), 30383046 (2009).
http://dx.doi.org/10.1039/b912547g
19.
19. D. Di Carlo, J. Edd, D. Irimia, R. Tompkins, and M. Toner, Anal. Chem. 80(6), 22042211 (2008).
http://dx.doi.org/10.1021/ac702283m
20.
20. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, P. Natl. Acad. Sci. USA 104(48), 1889218897 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
21.
21. R. Zhou and H. C. Chang, J. Colloid Interface Sci. 287(2), 647656 (2005).
http://dx.doi.org/10.1016/j.jcis.2005.02.023
22.
22. R. Zhou, J. Gordon, A. F. Palmer, and H.-C. Chang, Biotechnol. Bioeng. 93(2), 201211 (2006).
http://dx.doi.org/10.1002/bit.20672
23.
23. H. W. Hou, H. Y. Gan, A. A. S. Bhagat, L. D. Li, C. T. Lim, and J. Han, Biomicrofluidics 6(2), 024115 (2012).
http://dx.doi.org/10.1063/1.4710992
24.
24. J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9(7), 939948 (2009).
http://dx.doi.org/10.1039/b813952k
25.
25. J. S. Park and H. I. Jung, Anal. Chem. 81(20), 82808288 (2009).
http://dx.doi.org/10.1021/ac9005765
26.
26. T. S. Sim, K. Kwon, J. C. Park, J. G. Lee, and H. I. Jung, Lab Chip 11(1), 9399 (2011).
http://dx.doi.org/10.1039/c0lc00109k
27.
27. C. Torres, Alternative Lithography: Unleashing the Potentials of Nanotechnology (Kluwer Academic, Dordrecht, 2003).
28.
28. C. Sanders, C. Nelson, M. Hove, and G. L. Woods, Diagn. Microbiol. Infect. Dis. 32(2), 111113 (1998).
http://dx.doi.org/10.1016/S0732-8893(98)00075-3
29.
29. H. S. Moon, K. Kwon, S. I. Kim, H. Han, J. Sohn, S. Lee, and H. I. Jung, Lab Chip 11(6), 11181125 (2011).
http://dx.doi.org/10.1039/c0lc00345j
30.
30. T. Tanaka, T. Ishikawa, K. Numayama-Tsuruta, Y. Imai, H. Ueno, T. Yoshimoto, N. Matsuki, and T. Yamaguchi, Biomed. Microdevices 14(1), 2533 (2012).
http://dx.doi.org/10.1007/s10544-011-9582-y
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4788914
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic view of the multi-stage multi-orifice flow fractionation (MS-MOFF) system. At the first MOFF stage, the RBCs and WBCs split into two positions, and the MCF-7 cells focused at the middle of the channel (inside). At the second MOFF stage, RBCs and WBCs directed to the side channel (outside), similar to the first stage. On the other hand, a few MCF-7 cells that travelled through the side channel at the first stage (non-selected target) were directed to the middle of the channel (inside).

Image of FIG. 2.

Click to view

FIG. 2.

Photographic image of the MS-MOFF fabricated device.

Image of FIG. 3.

Click to view

FIG. 3.

Trajectory of cells through the multi-orifice microchannel according to channel Reynolds number (Rec ). A picture of the first stage separation region; two small pictures of the upper and lower second stage separation regions. When Rec was 70 at the first stage MOFF, the best separation of MCF-7 and blood cells was achieved at this flow rate condition.

Image of FIG. 4.

Click to view

FIG. 4.

Trajectory of MCF-7 cells through the multi-orifice microchannel according to Qc/Qm condition. Qc/Qm values represent the used portion of the central collecting channel. Qc, flow rate of the central collecting channel in the first MOFF stage; Qm, total flow rate in the first MOFF stage.

Image of FIG. 5.

Click to view

FIG. 5.

Size distribution of MCF-7 cells used in this study. The histogram was derived using an automated cell counter (Scepter, Millipore Co.). The coefficient of variation was relatively large (19.12%) since cell size depends on various conditions such as cell cycle and the microenvironment.

Tables

Generic image for table

Click to view

Table I.

Flow rate (μl/min) of each inlet and outlet at various Qc/Qm conditions.

Generic image for table

Click to view

Table II.

Separation efficiencies of blood and MCF-7 cells in the MS-MOFF depending on the Qc/Qm condition. The inside fraction exits to outlet 1 and the outside fraction to outlets 2 through 5.

Generic image for table

Click to view

Table III.

Separation efficiency in comparison of SS-MOFF, MOFF+DEP and MS-MOFF.

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4788914
2013-01-01
2014-04-17

Abstract

Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer; as such, the ability to isolate and quantify CTCs is of great biomedical importance. This research presents a multi-stage multi-orifice flow fractionation (MS-MOFF) device formed by combining three single-stage multi-orifice segments designed for separating breast cancer cells from blood. The structure and dimensions of the MS-MOFF were determined by hydrodynamic principles to have consistent Reynolds numbers (Re) at each multi-orifice segment. From this device, we achieved improved separation efficiency by collecting and re-separating non-selected target cells in comparison with the single-stage multi-orifice flow fractionation (SS-MOFF). The recovery of breast cancer cells increased from 88.8% to greater than 98.9% through the multi-stage multi-orifice segments. This device can be utilized to isolate rare cells from human blood, such as CTCs, in a label-free manner solely through the use of hydrodynamic forces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4788914.html;jsessionid=cnquq4ivdhjh.x-aip-live-03?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4788914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4788914
10.1063/1.4788914
SEARCH_EXPAND_ITEM