1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4788914
1.
1. K. Pantel, R. Brakenhoff, and B. Brandt, Nat. Rev. Cancer 8(5), 329340 (2008).
http://dx.doi.org/10.1038/nrc2375
2.
2. I. Georgakoudi, N. Solban, J. Novak, W. L. Rice, X. Wei, T. Hasan, and C. P. Lin, Cancer Res. 64(15), 50445047 (2004).
http://dx.doi.org/10.1158/0008-5472.CAN-04-1058
3.
3. W. J. Allard, J. Matera, M. C. Miller, M. Repollet, M. C. Connelly, C. Rao, A. G. J. Tibbe, J. W. Uhr, and L. W. M. M. Terstappen, Clin. Cancer Res. 10(20), 68976904 (2004).
http://dx.doi.org/10.1158/1078-0432.CCR-04-0378
4.
4. S. I. Kim and H. I. Jung, J. Breast Cancer 13(2), 125131 (2010).
http://dx.doi.org/10.4048/jbc.2010.13.2.125
5.
5. H. Kahn, A. Presta, L. Yang, J. Blondal, M. Trudeau, L. Lickley, C. Holloway, D. McCready, D. Maclean, and A. Marks, Breast Cancer Res. Treat. 86(3), 237247 (2004).
http://dx.doi.org/10.1023/B:BREA.0000036897.92513.72
6.
6. V. Zieglschmid, C. Hollmann, and O. Böcher, Crit. Rev. Cl. Lab. Sci. 42(2),155196 (2005).
http://dx.doi.org/10.1080/10408360590913696
7.
7. R. T. Krivacic, A. Ladanyi, D. N. Curry, H. B. Hsieh, P. Kuhn, D. E. Bergsrud, J. F. Kepros, T. Barbera, M. Y. Ho, L. B. Chen, R. A. Lerner, and R. H. Bruce, Proc. Natl. Acad. Sci. USA 101(29), 1050110504 (2004).
http://dx.doi.org/10.1073/pnas.0404036101
8.
8. K. Han, A. Han, and A. Frazier, Biosens. Bioelectron. 21(10), 19071914 (2006).
http://dx.doi.org/10.1016/j.bios.2006.01.024
9.
9. K. Han, S. Han, and A. Frazier, Lab Chip 9(20), 29582964 (2009).
http://dx.doi.org/10.1039/b909753h
10.
10. S. Nagrath, L. Sequist, S. Maheswaran, D. Bell, D. Irimia, L. Ulkus, M. Smith, E. Kwak, S. Digumarthy, and A. Muzikansky, Nature 450(7173), 12351239 (2007).
http://dx.doi.org/10.1038/nature06385
11.
11. S. Wang, K. Liu, J. Liu, Z. T. F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H. R. Tseng, Angew. Chem. Int. Ed. 50(13), 30843088 (2011).
http://dx.doi.org/10.1002/anie.201005853
12.
12. A. Adams, P. Okagbare, J. Feng, M. Hupert, D. Patterson, J. Gottert, R. McCarley, D. Nikitopoulos, and M. Murphy, S. Soper, J. Am. Chem. Soc. 130(27), 86338641 (2008).
http://dx.doi.org/10.1021/ja8015022
13.
13. G. Deng, M. Herrler, D. Burgess, E. Manna, D. Krag, and J. Burke, Breast Cancer Res. 10(4), R69 (2008).
http://dx.doi.org/10.1186/bcr2131
14.
14. H. Mohamed, M. Murray, J. N. Turner, and M. Caggana, J. Chromatogr. A 1216(47), 82898295 (2009).
http://dx.doi.org/10.1016/j.chroma.2009.05.036
15.
15. S. Velugotla, S. Pells, H. K. Mjoseng, C. R. E. Duffy, S. Smith, P. De Sousa, and R. Pethig, Biomicrofluidics 6(4), 044113 (2012).
http://dx.doi.org/10.1063/1.4771316
16.
16. N. Piacentini, G. Mernier, R. Tornay, and P. Renaud, Biomicrofluidics 5(3), 034122 (2011).
http://dx.doi.org/10.1063/1.3640045
17.
17. V. Gupta, I. Jafferji, M. Garza, V. O. Melnikova, D. K. Hasegawa, R. Pethig, and D. W. Davis, Biomicrofluidics 6(2), 024133 (2012).
http://dx.doi.org/10.1063/1.4731647
18.
18. D. Di Carlo, Lab Chip 9(21), 30383046 (2009).
http://dx.doi.org/10.1039/b912547g
19.
19. D. Di Carlo, J. Edd, D. Irimia, R. Tompkins, and M. Toner, Anal. Chem. 80(6), 22042211 (2008).
http://dx.doi.org/10.1021/ac702283m
20.
20. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, P. Natl. Acad. Sci. USA 104(48), 1889218897 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
21.
21. R. Zhou and H. C. Chang, J. Colloid Interface Sci. 287(2), 647656 (2005).
http://dx.doi.org/10.1016/j.jcis.2005.02.023
22.
22. R. Zhou, J. Gordon, A. F. Palmer, and H.-C. Chang, Biotechnol. Bioeng. 93(2), 201211 (2006).
http://dx.doi.org/10.1002/bit.20672
23.
23. H. W. Hou, H. Y. Gan, A. A. S. Bhagat, L. D. Li, C. T. Lim, and J. Han, Biomicrofluidics 6(2), 024115 (2012).
http://dx.doi.org/10.1063/1.4710992
24.
24. J. S. Park, S. H. Song, and H. I. Jung, Lab Chip 9(7), 939948 (2009).
http://dx.doi.org/10.1039/b813952k
25.
25. J. S. Park and H. I. Jung, Anal. Chem. 81(20), 82808288 (2009).
http://dx.doi.org/10.1021/ac9005765
26.
26. T. S. Sim, K. Kwon, J. C. Park, J. G. Lee, and H. I. Jung, Lab Chip 11(1), 9399 (2011).
http://dx.doi.org/10.1039/c0lc00109k
27.
27. C. Torres, Alternative Lithography: Unleashing the Potentials of Nanotechnology (Kluwer Academic, Dordrecht, 2003).
28.
28. C. Sanders, C. Nelson, M. Hove, and G. L. Woods, Diagn. Microbiol. Infect. Dis. 32(2), 111113 (1998).
http://dx.doi.org/10.1016/S0732-8893(98)00075-3
29.
29. H. S. Moon, K. Kwon, S. I. Kim, H. Han, J. Sohn, S. Lee, and H. I. Jung, Lab Chip 11(6), 11181125 (2011).
http://dx.doi.org/10.1039/c0lc00345j
30.
30. T. Tanaka, T. Ishikawa, K. Numayama-Tsuruta, Y. Imai, H. Ueno, T. Yoshimoto, N. Matsuki, and T. Yamaguchi, Biomed. Microdevices 14(1), 2533 (2012).
http://dx.doi.org/10.1007/s10544-011-9582-y
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4788914
Loading
/content/aip/journal/bmf/7/1/10.1063/1.4788914
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4788914
2013-01-01
2014-10-31

Abstract

Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer; as such, the ability to isolate and quantify CTCs is of great biomedical importance. This research presents a multi-stage multi-orifice flow fractionation (MS-MOFF) device formed by combining three single-stage multi-orifice segments designed for separating breast cancer cells from blood. The structure and dimensions of the MS-MOFF were determined by hydrodynamic principles to have consistent Reynolds numbers (Re) at each multi-orifice segment. From this device, we achieved improved separation efficiency by collecting and re-separating non-selected target cells in comparison with the single-stage multi-orifice flow fractionation (SS-MOFF). The recovery of breast cancer cells increased from 88.8% to greater than 98.9% through the multi-stage multi-orifice segments. This device can be utilized to isolate rare cells from human blood, such as CTCs, in a label-free manner solely through the use of hydrodynamic forces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4788914.html;jsessionid=akn1k9g9h3goc.x-aip-live-03?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4788914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4788914
10.1063/1.4788914
SEARCH_EXPAND_ITEM