1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Chip in a lab: Microfluidics for next generation life science research
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4789751
1.
1. A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators B 1(1–6), 244248 (1990).
http://dx.doi.org/10.1016/0925-4005(90)80209-I
2.
2. Y. Xia and G. M. Whitesides, Angew. Chem., Int. Ed. 37(5), 550575 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
3.
3. T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298(5593), 580584 (2002).
http://dx.doi.org/10.1126/science.1076996
4.
4. G. M. Whitesides, Lab Chip 13, 1113 (2013).
http://dx.doi.org/10.1039/c2lc90109a
5.
5. X. Li, D. R. Ballerini, and W. Shen, Biomicrofluidics 6(1), 113011130113 (2012).
http://dx.doi.org/10.1063/1.3687398
6.
6. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem. 82(1), 310 (2010).
http://dx.doi.org/10.1021/ac9013989
7.
7. L. Lafleur, D. Stevens, K. McKenzie, S. Ramachandran, P. Spicar-Mihalic, M. Singhal, A. Arjyal, J. Osborn, P. Kauffman, P. Yager, and B. Lutz, Lab Chip 12(6), 11191127 (2012).
http://dx.doi.org/10.1039/c2lc20751f
8.
8. L. Gervais, N. de Rooij, and E. Delamarche, Adv. Mater. 23(24), H151176 (2011).
http://dx.doi.org/10.1002/adma.201100464
9.
9. R. Pethig, Biomicrofluidics 4(2), 022811022835 (2010).
http://dx.doi.org/10.1063/1.3456626
10.
10. C. L. Hansen, M. O. A. Sommer, and S. R. Quake, Proc. Natl. Acad. Sci. USA 101(40), 1443114436 (2004).
http://dx.doi.org/10.1073/pnas.0405847101
11.
11. C. L. Hansen, E. Skordalakes, J. M. Berger, and S. R. Quake, Proc. Natl. Acad. Sci. USA 99(26), 1653116536 (2002).
http://dx.doi.org/10.1073/pnas.262485199
12.
12. M. J. Anderson, C. L. Hansen, and S. R. Quake, Proc. Natl. Acad. Sci. USA 103(45), 1674616751 (2006).
http://dx.doi.org/10.1073/pnas.0605293103
13.
13. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86(18), 41634166 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4163
14.
14. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir 19(22), 91279133 (2003).
http://dx.doi.org/10.1021/la030090w
15.
15. B. Zheng, L. S. Roach, and R. F. Ismagilov, J. Am. Chem. Soc. 125(37), 1117011171 (2003).
http://dx.doi.org/10.1021/ja037166v
16.
16.See http://www.emeraldbiosystems.com/t-mpcsplugmaker.aspx for Emerald Biosystems' Microcapillary Protein Crystallization System.
17.
17. J. Q. Boedicker, M. E. Vincent, and R. F. Ismagilov, Angew. Chem., Int. Ed. Engl. 48(32), 59085911 (2009).
http://dx.doi.org/10.1002/anie.200901550
18.
18. M. C. Park, J. Y. Hur, K. W. Kwon, S.-H. Park, and K. Y. Suh, Lab Chip 6(8), 988994 (2006).
http://dx.doi.org/10.1039/b602961b
19.
19. Y. Marcy, C. Ouverney, E. M. Bik, T. Losekann, N. Ivanova, H. G. Martin, E. Szeto, D. Platt, P. Hugenholtz, D. A. Relman, and S. R. Quake, Proc. Natl. Acad. Sci. USA 104(29), 1188911894 (2007).
http://dx.doi.org/10.1073/pnas.0704662104
20.
20. Y. Marcy, T. Ishoey, R. S. Lasken, T. B. Stockwell, B. P. Walenz, A. L. Halpern, K. Y. Beeson, S. M. Goldberg, and S. R. Quake, PLoS Genet. 3(9), 17021708 (2007).
http://dx.doi.org/10.1371/journal.pgen.0030155
21.
21. L. Y. Yeo and J. R. Friend, Biomicrofluidics 3(1), 012002012023 (2009).
http://dx.doi.org/10.1063/1.3056040
22.
22. S. Girardo, M. Cecchini, F. Beltram, R. Cingolani, and D. Pisignano, Lab Chip 8(9), 15571563 (2008).
http://dx.doi.org/10.1039/b803967d
23.
23. X. Ding, S.-C. S. Lin, M. I. Lapsley, S. Li, X. Guo, C. Y. Chan, I. K. Chiang, L. Wang, J. P. McCoy, and T. J. Huang, Lab Chip 12(21), 42284231 (2012).
http://dx.doi.org/10.1039/c2lc40751e
24.
24. J. Nam, H. Lim, C. Kim, J. Y. Kang, and S. Shin, Biomicrofluidics 6(2), 024120102412010 (2012).
http://dx.doi.org/10.1063/1.4718719
25.
25. B. S. Cho, T. G. Schuster, X. Y. Zhu, D. Chang, G. D. Smith, and S. Takayama, Anal. Chem. 75(7), 16711675 (2003).
http://dx.doi.org/10.1021/ac020579e
26.
26. S. Wang, K. Liu, J. Liu, Z. T. F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y.-K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H.-R. Tseng, Angew. Chem., Int. Ed. 50(13), 30843088 (2011).
http://dx.doi.org/10.1002/anie.201005853
27.
27. S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, Nat. Methods 8(3), 242U283 (2011).
http://dx.doi.org/10.1038/nmeth.1569
28.
28. Y. Men, Y. Fu, Z. Chen, P. A. Sims, W. J. Greenleaf, and Y. Huang, Anal. Chem. 84(10), 42624266 (2012).
http://dx.doi.org/10.1021/ac300761n
29.
29. E. A. Ottesen, J. W. Hong, S. R. Quake, and J. R. Leadbetter, Science 314(5804), 14641467 (2006).
http://dx.doi.org/10.1126/science.1131370
30.
30. I. E. Araci and S. R. Quake, Lab Chip 12(16), 28032806 (2012).
http://dx.doi.org/10.1039/c2lc40258k
31.
31. C. Jäckel, P. Kast, and D. Hilvert, Annu. Rev. Biophys. 37(1), 153173 (2008).
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
32.
32. J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J. C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, and D. A. Weitz, Proc. Natl. Acad. Sci. USA 107(9), 40044009 (2010).
http://dx.doi.org/10.1073/pnas.0910781107
33.
33. X. Z. Niu, F. Gielen, J. B. Edel, and A. J. deMello, Nat. Chem. 3(6), 437442 (2011).
http://dx.doi.org/10.1038/nchem.1046
34.
34. A. R. Wu, T. L. A. Kawahara, N. A. Rapicavoli, J. van Riggelen, E. H. Shroff, L. W. Xu, D. W. Felsher, H. Y. Chang, and S. R. Quake, Lab Chip 12(12), 21902198 (2012).
http://dx.doi.org/10.1039/c2lc21290k
35.
35. J. Wang, G. Sui, V. P. Mocharla, R. J. Lin, M. E. Phelps, H. C. Kolb, and H.-R. Tseng, Angew. Chem., Int. Ed. 45(32), 52765281 (2006).
http://dx.doi.org/10.1002/anie.200601677
36.
36. Y. Wang, W. Y. Lin, K. Liu, R. J. Lin, M. Selke, H. C. Kolb, N. Zhang, X. Z. Zhao, M. E. Phelps, C. K. Shen, K. F. Faull, and H. R. Tseng, Lab Chip 9(16), 22812285 (2009).
http://dx.doi.org/10.1039/b907430a
37.
37. K. A. Heyries, C. Tropini, M. Vaninsberghe, C. Doolin, O. I. Petriv, A. Singhal, K. Leung, C. B. Hughesman, and C. L. Hansen, Nat. Methods 8(8), 649651 (2011).
http://dx.doi.org/10.1038/nmeth.1640
38.
38. J. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. van der Veen, and H. L. Ploegh, Nat. Biotechnol. 24(6), 703707 (2006).
http://dx.doi.org/10.1038/nbt1210
39.
39. A. O. Ogunniyi, C. M. Story, E. Papa, E. Guillen, and J. C. Love, Nat. Protoc. 4(5), 767782 (2009).
http://dx.doi.org/10.1038/nprot.2009.40
40.
40. N. Varadarajan, D. S. Kwon, K. M. Law, A. O. Ogunniyi, M. N. Anahtar, J. M. Richter, B. D. Walker, and J. C. Love, Proc. Natl. Acad. Sci. USA 109(10), 38853890 (2012).
http://dx.doi.org/10.1073/pnas.1111205109
41.
41. Q. Han, N. Bagheri, E. M. Bradshaw, D. A. Hafler, D. A. Lauffenburger, and J. C. Love, Proc. Natl. Acad. Sci. USA 109(5), 16071612 (2012).
http://dx.doi.org/10.1073/pnas.1117194109
42.
42. W. Zhao, S. Schafer, J. Choi, Y. J. Yamanaka, M. L. Lombardi, S. Bose, A. L. Carlson, J. A. Phillips, W. Teo, I. A. Droujinine, C. H. Cui, R. K. Jain, J. Lammerding, J. C. Love, C. P. Lin, D. Sarkar, R. Karnik, and J. M. Karp, Nat. Nanotechnol. 6(8), 524531 (2011).
http://dx.doi.org/10.1038/nnano.2011.101
43.
43. Q. Shi, L. Qin, W. Wei, F. Geng, R. Fan, Y. S. Shin, D. Guo, L. Hood, P. S. Mischel, and J. R. Heath, Proc. Natl. Acad. Sci. USA 109(2), 419424 (2012).
http://dx.doi.org/10.1073/pnas.1110865109
44.
44. Y. S. Shin, H. Ahmad, Q. Shi, H. Kim, T. A. Pascal, R. Fan, W. A. Goddard III, and J. R. Heath, ChemPhysChem 11(14), 30633069 (2010).
http://dx.doi.org/10.1002/cphc.201000528
45.
45. C. Ma, R. Fan, H. Ahmad, Q. Shi, B. Comin-Anduix, T. Chodon, R. C. Koya, C. C. Liu, G. A. Kwong, C. G. Radu, A. Ribas, and J. R. Heath, Nat. Med. 17(6), 738743 (2011).
http://dx.doi.org/10.1038/nm.2375
46.
46. S. J. Maerkl and S. R. Quake, Science 315(5809), 233237 (2007).
http://dx.doi.org/10.1126/science.1131007
47.
47. S. J. Maerkl and S. R. Quake, Proc. Natl. Acad. Sci. USA 106(44), 1865018655 (2009).
http://dx.doi.org/10.1073/pnas.0907688106
48.
48. D. Gerber, S. J. Maerkl, and S. R. Quake, Nat. Methods 6(1), 7174 (2009).
http://dx.doi.org/10.1038/nmeth.1289
49.
49. M. Meier, R. Sit, W. Pan, and S. R. Quake, Anal. Chem. 84(21), 95729578 (2012).
http://dx.doi.org/10.1021/ac302436y
50.
50. M. Meier, R. V. Sit, and S. R. Quake, Proc. Natl. Acad. Sci. USA 110(2), 477482 (2013).
http://dx.doi.org/10.1073/pnas.1210634110
51.
51. S. Einav, D. Gerber, P. D. Bryson, E. H. Sklan, M. Elazar, S. J. Maerkl, J. S. Glenn, and S. R. Quake, Nat. Biotechnol. 26(9), 10191027 (2008).
http://dx.doi.org/10.1038/nbt.1490
52.
52. L. Martin, M. Meier, S. M. Lyons, R. V. Sit, W. F. Marzluff, S. R. Quake, and H. Y. Chang, Nat. Methods 9, 11921194 (2012).
http://dx.doi.org/10.1038/nmeth.2225
53.
53. A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas III, H. Sindi, and G. M. Whitesides, Anal. Chem. 80(10), 36993707 (2008).
http://dx.doi.org/10.1021/ac800112r
54.
54.See http://www.stanford.edu/group/foundry/ for Stanford Microfluidic Foundry website.
55.
55.See http://microfluidics.lbl.gov/ for Lawrence Berkeley National Lab Microfluidics Lab website (R. Gómez-Sjöberg).
56.
56. P. G. Vekilov and A. A. Chernov, in Solid State Physics, edited by E. Henry and S. Frans (Academic, 2003), Vol. 57, pp. 1147.
57.
57. A. M. Streets and S. R. Quake, Phys. Rev. Lett. 104(17), 178102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.178102
58.
58. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, Nature 446(7139), 10661069 (2007).
http://dx.doi.org/10.1038/nature05741
59.
59. W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, Proc. Natl. Acad. Sci. USA 108(27), 1099210996 (2011).
http://dx.doi.org/10.1073/pnas.1104651108
60.
60. S. Son, A. Tzur, Y. Weng, P. Jorgensen, J. Kim, M. W. Kirschner, and S. R. Manalis, Nat. Methods 9(9), 910912 (2012).
http://dx.doi.org/10.1038/nmeth.2133
61.
61. F. K. Balagadde, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, Science 309(5731), 137140 (2005).
http://dx.doi.org/10.1126/science.1109173
62.
62. R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, Anal. Chem. 79(22), 85578563 (2007).
http://dx.doi.org/10.1021/ac071311w
63.
63. S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, Nature 466(7303), 267271 (2010).
http://dx.doi.org/10.1038/nature09145
64.
64. C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, Proc. Natl. Acad. Sci. USA 104(35), 1389113895 (2007).
http://dx.doi.org/10.1073/pnas.0706513104
65.
65. H. Ma, L. Jiang, W. Shi, J. Qin, and B. Lin, Biomicrofluidics 3(4), 044114044118 (2009).
http://dx.doi.org/10.1063/1.3274313
66.
66. X. C. i Solvas, F. M. Geier, A. M. Leroi, J. G. Bundy, J. B. Edel, and A. J. deMello, Chem. Commun. 47(35), 98019803 (2011).
http://dx.doi.org/10.1039/c1cc14076k
67.
67. K. Chung, M. M. Crane, and H. Lu, Nat. Methods 5(7), 637643 (2008).
http://dx.doi.org/10.1038/nmeth.1227
68.
68. M. M. Crane, J. N. Stirman, C. Y. Ou, P. T. Kurshan, J. M. Rehg, K. Shen, and H. Lu, Nat. Methods 9(10), 977980 (2012).
http://dx.doi.org/10.1038/nmeth.2141
69.
69. P. C. Blainey, A. C. Mosier, A. Potanina, C. A. Francis, and S. R. Quake, PLoS ONE 6(2), e16626 (2011).
http://dx.doi.org/10.1371/journal.pone.0016626
70.
70. I. P. Marshall, P. C. Blainey, A. M. Spormann, and S. R. Quake, Appl. Environ. Microbiol. 78(24), 85558563 (2012).
http://dx.doi.org/10.1128/AEM.02314-12
71.
71. N. H. Youssef, P. C. Blainey, S. R. Quake, and M. S. Elshahed, Applied Appl. Environ. Microbiol. 77(21), 78047814 (2011).
http://dx.doi.org/10.1128/AEM.06059-11
72.
72. S. J. Pamp, E. D. Harrington, S. R. Quake, D. A. Relman, and P. C. Blainey, Genome Res. 22(6), 11071119 (2012).
http://dx.doi.org/10.1101/gr.131482.111
73.
73. H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, Nat. Biotechnol. 29(1), 5157 (2011).
http://dx.doi.org/10.1038/nbt.1739
74.
74. J. Wang, H. C. Fan, B. Behr, and S. R. Quake, Cell 150(2), 402412 (2012).
http://dx.doi.org/10.1016/j.cell.2012.06.030
75.
75. R. S. Lasken, Nat. Rev. Microbiol. 10(9), 631640 (2012).
http://dx.doi.org/10.1038/nrmicro2857
76.
76. V. Lecault, A. K. White, A. Singhal, and C. L. Hansen, Curr. Opin. Chem. Biol. 16(3–4), 381390 (2012).
http://dx.doi.org/10.1016/j.cbpa.2012.03.022
77.
77. H. Yin and D. Marshall, Curr. Opin Biotechnol. 23(1), 110119 (2012).
http://dx.doi.org/10.1016/j.copbio.2011.11.002
78.
78. R. N. Zare and S. Kim, Annu. Rev. Biomed. Eng. 12, 187201 (2010).
http://dx.doi.org/10.1146/annurev-bioeng-070909-105238
79.
79. D. Ryan, K. Ren, and H. Wu, Biomicrofluidics 5(2), 021501021509 (2011).
http://dx.doi.org/10.1063/1.3574448
80.
80. K. Leung, H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson, A. P. Page, C. C. Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen, Proc. Natl. Acad. Sci. USA 109(20), 76657670 (2012).
http://dx.doi.org/10.1073/pnas.1106752109
81.
81. V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, Nat. Methods 8(7), 581586 (2011).
http://dx.doi.org/10.1038/nmeth.1614
82.
82. G. W. Li and X. S. Xie, Nature 475(7356), 308315 (2011).
http://dx.doi.org/10.1038/nature10315
83.
83. L. Cai, N. Friedman, and X. S. Xie, Nature 440(7082), 358362 (2006).
http://dx.doi.org/10.1038/nature04599
84.
84. Y. Taniguchi, P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and X. S. Xie, Science 329(5991), 533538 (2010).
http://dx.doi.org/10.1126/science.1188308
85.
85. T. Kalisky and S. R. Quake, Nat. Methods 8(4), 311314 (2011).
http://dx.doi.org/10.1038/nmeth0411-311
86.
86. P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, Nat. Biotechnol. 29(12), 11201127 (2011).
http://dx.doi.org/10.1038/nbt.2038
87.
87. Y. Buganim, D. A. Faddah, A. W. Cheng, E. Itskovich, S. Markoulaki, K. Ganz, S. L. Klemm, A. van Oudenaarden, and R. Jaenisch, Cell 150(6), 12091222 (2012).
http://dx.doi.org/10.1016/j.cell.2012.08.023
88.
88.Recently acquired by PerkinElmer.
90.
90.See http://www.genomics.agilent.com for Agilent.
91.
91. R. A. White III, S. R. Quake, and K. Curr, J. Virol. Methods 179(1), 4550 (2012).
http://dx.doi.org/10.1016/j.jviromet.2011.09.017
92.
92. A. D. Tadmor, E. A. Ottesen, J. R. Leadbetter, and R. Phillips, Science 333(6038), 5862 (2011).
http://dx.doi.org/10.1126/science.1200758
93.
93. H. C. Fan and S. R. Quake, Anal. Chem. 79(19), 75767579 (2007).
http://dx.doi.org/10.1021/ac0709394
94.
94. T. M. Snyder, K. K. Khush, H. A. Valantine, and S. R. Quake, Proc. Natl. Acad. Sci. USA 108(15), 62296234 (2011).
http://dx.doi.org/10.1073/pnas.1013924108
95.
95. L. M. Boettger, R. E. Handsaker, M. C. Zody, and S. A. McCarroll, Nat. Genet. 44(8), 881885 (2012).
http://dx.doi.org/10.1038/ng.2334
96.
96. R. Tewhey, J. B. Warner, M. Nakano, B. Libby, M. Medkova, P. H. David, S. K. Kotsopoulos, M. L. Samuels, J. B. Hutchison, J. W. Larson, E. J. Topol, M. P. Weiner, O. Harismendy, J. Olson, D. R. Link, and K. A. Frazer, Nat. Biotechnol. 27(11), 10251031 (2009).
http://dx.doi.org/10.1038/nbt.1583
97.
97. B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia, A. J. Makarewicz, I. J. Bright, M. Y. Lucero, A. L. Hiddessen, T. C. Legler, T. K. Kitano, M. R. Hodel, J. F. Petersen, P. W. Wyatt, E. R. Steenblock, P. H. Shah, L. J. Bousse, C. B. Troup, J. C. Mellen, D. K. Wittmann, N. G. Erndt, T. H. Cauley, R. T. Koehler, A. P. So, S. Dube, K. A. Rose, L. Montesclaros, S. Wang, D. P. Stumbo, S. P. Hodges, S. Romine, F. P. Milanovich, H. E. White, J. F. Regan, G. A. Karlin–Neumann, C. M. Hindson, S. Saxonov, and B. W. Colston, Anal. Chem. 83(22), 86048610 (2011).
http://dx.doi.org/10.1021/ac202028g
98.
98. D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, Lab Chip 11(13), 21562166 (2011).
http://dx.doi.org/10.1039/c1lc20128j
99.
99. T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P. Snyder, and A. E. Barron, Anal. Chem. 83(12), 43274341 (2011).
http://dx.doi.org/10.1021/ac2010857
100.
100. G. M. Whitesides, Nature 442(7101), 368373 (2006).
http://dx.doi.org/10.1038/nature05058
101.
101.See http://www.fluidigm.com/ for information about Fluidigm Corporation.
102.
102.See http://www.bio-rad.com/prd/en/US/LSR/PDP/M9HE3XE8Z/QX100-Droplet-Digital-PCR-System for Bio-Rad QX 100 Droplet Digital PCR system.
103.
103.See http://raindancetech.com/ for RainDance Technologies website.
105.
105.See http://www.iontorrent.com/ for Life Technologies iontorrent system.
106.
106.See http://www.illumina.com/ for Illumina Incorporated website.
107.
107.See http://www.helicosbio.com/ for Helicos Biosciences corporation website.
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4789751
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Illustration of generic hand held digital glucose meter. (b) A microfluidic paper-based analytical device (μPAD) Reprinted with permission from A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem. 82(1), 3–10 (2010). Copyright 2010 American Chemical Society. (c) A microfluidic chip (inset) in a laboratory. The scale bars are 10 cm and 1 cm (inset).

Image of FIG. 2.

Click to view

FIG. 2.

(a) A microfluidic formulation device for high throughput solubility screening of proteins. The primary element is a mixing ring. Peristaltic pumps (in red) inject protein and precipitant into ring and yellow pumps mix the contents of the ring. Reprinted with permission from C. L. Hansen, M. O. A. Sommer, and S. R. Quake, Proc. Natl. Acad. Sci. USA 101(40), 14431–14436 (2004). Copyright 2004 National Academy of Sciences, USA. (b) A free interface diffusion based mixing array for protein crystal screening similar to the device used in Refs. 11 and 12 . (c) A simplified illustration of two microfluidic valves creating a chamber. Typical channels are on the order of 100 μm. Chambers defined in the flow channel by two such valves can be on the order of 100 pl. (d) An emulsion generator using cross flow to shear droplets from the “Y” junction. The two reagents will eventually mix diffusively. (e) A diagram and micrograph showing bacterial confinement in droplets. Green arrows point to bacteria which initiated quorum sensing. Reprinted with permission from J. Q. Boedicker, M. E. Vincent, and R. F. Ismagilov, Angew. Chem., Int. Ed. Engl. 48(32), 5908–5911 (2009). Copyright 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) A two-layered microfluidic device for trapping, lysing, and amplifying the genetic material ofsingle cells. Reprinted with permission from Y. Marcy, C. Ouverney, E. M. Bik, T. Losekann, N. Ivanova, H. G. Martin, E. Szeto, D. Platt, P. Hugenholtz, D. A. Relman, and S. R. Quake, Proc. Natl. Acad. Sci. USA 104(29), 11889–11894 (2007). Copyright 2007 National Academy of Sciences, USA.

Image of FIG. 3.

Click to view

FIG. 3.

(a) A microfluidic mixing device for high throughput single molecule measurements (left). FRET labeled single stranded DNA is mixed with its complimentary molecule or various salts to measure conformational response. A 3D conformation map is constructed through sequential titration of reagents and automated data collection (right). Reprinted with permission from S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, Nat. Methods 8(3), 242–245 (2011). (b)Ultra-high density digital PCR chip with 36-femtoliter microwells. The illustration depicts the experimental setup for thermal cycling the device. Reprinted with permission from Y. Men, Y. Fu, Z. Chen, P. A. Sims, W. J. Greenleaf, and Y. Huang, Anal. Chem. 84(10), 4262–4266 (2012). Copyright 2012 American Chemical Society. (c) Optical micrograph of microfluidic very large scale integration. These valve arrays are made of channels with cross section of 8 and 6 μm. Reprinted with permission from I. E. Araci and S. R. Quake, Lab Chip 12(16), 2803–2806 (2012). Copyright 2012 by the Royal Society of Chemistry.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Picoliter emulsion generator, transfer line, and sorter. Reprinted with permission from J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J. C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, and D. A. Weitz, Proc. Natl. Acad. Sci. USA 107(9), 4004–4009 (2010). (b) Megapixel digital PCR array. After chambers are filled, they are isolated by flowing an immiscible liquid down the connecting fluid lines preventing molecules from diffusing between chambers. The micrograph shows the imaged array after amplification. Reprinted with permission from K. A. Heyries, C. Tropini, M. Vaninsberghe, C. Doolin, O. I. Petriv, A. Singhal, K. Leung, C. B. Hughesman, and C. L. Hansen, Nat. Methods 8(8), 649–651 (2011). Copyright 2011 Macmillan Publishers Ltd. (c) Process for microengraving (left). A dilute cell suspension is dropped onto the microwell array for cell sequestering. This array is used to print secreted antibodies onto a pre-coated slide. The scanned micrograph displays the resulting microengraved array with fluorescently detected spots (right). Reprinted with permission from J. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. van der Veen, and H. L. Ploegh, Nat. Biotechnol. 24(6), 703–707 (2006). Copyright 2006 Macmillan Publishers Ltd.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Single cell barcoding chip (SCBC) (left). The chip is aligned with a pre-printed DNA bar code (not shown). After conversion to antibody bar code and incubation with single cells the chip is removed and the bar code array is scanned (right). Reprinted with permission from C. Ma, R. Fan, H. Ahmad, Q. Shi, B. Comin-Anduix, T. Chodon, R. C. Koya, C. C. Liu, G. A. Kwong, C. G. Radu, A. Ribas, and J. R. Heath, Nat. Med. 17(6), 738–743 (2011). Copyright 2011 Macmillan Publishers Ltd. (b) Mechanically induced trapping of molecular interactions (MITOMI) chip (top). Optical micrograph inset shows the button and incubation chamber pair. The chip preparation pipeline and button action are illustrated below. Reprinted with permission from S. J. Maerkl and S. R. Quake, Science 315(5809), 233–237 (2007). Copyright 2007 AAAS.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Schematic diagram of integrated dynamic light scattering and microscopy for microfluidic-based protein crystal growth studies from Ref. 57 . (b) Photograph of the microchemostat. Reprinted with permission from F. K. Balagadde, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, Science 309(5731), 137–140 (2005). Copyright 2005 AAAS. (c) Photograph of the cell culture chip used in Ref. 62 courtesy of R. Gomez-Sjoberg. (d) Diagram of chip for C. elegan trapping, imaging, and sorting used in Ref. 64 . Reprinted with permission from C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, Proc. Natl. Acad. Sci. USA 104(35), 13891–13895 (2007). Copyright 2007 National Academy of Sciences, USA. (e) Optical micrograph of C. elegan immobilization chamber in the device described in Refs. 67 and 68 . Reprinted with permission from K. Chung, M. M. Crane, and H. Lu, Nat. Methods 5(7), 637–643 (2008). Copyright 2008 Macmillan Publishers Ltd.

Image of FIG. 7.

Click to view

FIG. 7.

(a) Diagram of laser trap sorting of single cells. This is a two layer “push-up” device and the laser trap drags the cell past two open valves and then into the lysis chamber. (Below)An optical micrograph of the whole device which was used in Refs. 69–72 . Device was fabricated by the Stanford microfluidic foundry staff. Figure courtesy of P. Blainey. (b) Device schematic for single chromosome sequencing. Red and blue lines represent the flow channels and green are the control. Single cells are trapped in the cross-junction, lysed in the following chamber and then chromosomes are separated into the sequential channels. Optical micrographs (bottom) depict a single metaphase cell in the channel and its chromosomes after lysis. 73 Reprinted with permission from H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, Nat. Biotechnol. 29(1), 51–57 (2011). Copyright 2011 Macmillan Publishers Ltd. (c) Device schematic for the single sperm sequencing chip used in Ref. 74 . Optical micrograph depicts a single sperm cell trapped a flow channel. Reprinted with permission from J.Wang, H. C. Fan, B. Behr, and S. R. Quake, Cell 150(2), 402–412 (2012). Copyright 2012 Elsevier.

Image of FIG. 8.

Click to view

FIG. 8.

(a) Device schematic of the programmable droplet based reaction array used in Ref. 80 . Droplets from 8 reagent inputs are directed to an array address and merged with other droplets to form a desired reaction. Reprinted with permission from K. Leung, H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson, A. P. Page, C. C. Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen, Proc. Natl. Acad. Sci. USA 109(20), 7665–7670 (2012). (b) Chamber array chip for high density culture of non-adherent mammalian cells. Micrographs (top) show chamber array with single cells. Reprinted with permission from V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. Knapp, S. Wohrer, W. Bowden, F. Viel, T.McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, Nat. Methods 8(7), 581–586 (2011). Copyright 2011 Macmillan Publishers Ltd. (c) Experimental setup for single molecule gene expression studies in single cells. 83 Two control channels define nanoliter cell confinement. Reprinted with permission from L. Cai, N. Friedman, and X. S. Xie, Nature 440(7082), 358–362 (2006). Copyright 2006 Macmillan Publishers Ltd. (d) Experimental setup for proteome and transcriptome profiling. 84 Different strains of engineered bacteria are monitored in parallel flow channels. Micrograph (right) depicts gene expression observation in single bacteria. Reprinted with permission from Y. Taniguchi, P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and X. S. Xie, Science 329(5991), 533–538 (2010). Copyright 2010 AAAS.

Tables

Generic image for table

Click to view

Table I.

A list of commercial laboratory machines that incorporate microfluidic technology.

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4789751
2013-01-31
2014-04-20

Abstract

Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4789751.html;jsessionid=8u7rqfufs30b2.x-aip-live-01?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4789751&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Chip in a lab: Microfluidics for next generation life science research
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4789751
10.1063/1.4789751
SEARCH_EXPAND_ITEM