1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Chip in a lab: Microfluidics for next generation life science research
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/1/10.1063/1.4789751
1.
1. A. Manz, N. Graber, and H. M. Widmer, Sens. Actuators B 1(1–6), 244248 (1990).
http://dx.doi.org/10.1016/0925-4005(90)80209-I
2.
2. Y. Xia and G. M. Whitesides, Angew. Chem., Int. Ed. 37(5), 550575 (1998).
http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
3.
3. T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298(5593), 580584 (2002).
http://dx.doi.org/10.1126/science.1076996
4.
4. G. M. Whitesides, Lab Chip 13, 1113 (2013).
http://dx.doi.org/10.1039/c2lc90109a
5.
5. X. Li, D. R. Ballerini, and W. Shen, Biomicrofluidics 6(1), 113011130113 (2012).
http://dx.doi.org/10.1063/1.3687398
6.
6. A. W. Martinez, S. T. Phillips, G. M. Whitesides, and E. Carrilho, Anal. Chem. 82(1), 310 (2010).
http://dx.doi.org/10.1021/ac9013989
7.
7. L. Lafleur, D. Stevens, K. McKenzie, S. Ramachandran, P. Spicar-Mihalic, M. Singhal, A. Arjyal, J. Osborn, P. Kauffman, P. Yager, and B. Lutz, Lab Chip 12(6), 11191127 (2012).
http://dx.doi.org/10.1039/c2lc20751f
8.
8. L. Gervais, N. de Rooij, and E. Delamarche, Adv. Mater. 23(24), H151176 (2011).
http://dx.doi.org/10.1002/adma.201100464
9.
9. R. Pethig, Biomicrofluidics 4(2), 022811022835 (2010).
http://dx.doi.org/10.1063/1.3456626
10.
10. C. L. Hansen, M. O. A. Sommer, and S. R. Quake, Proc. Natl. Acad. Sci. USA 101(40), 1443114436 (2004).
http://dx.doi.org/10.1073/pnas.0405847101
11.
11. C. L. Hansen, E. Skordalakes, J. M. Berger, and S. R. Quake, Proc. Natl. Acad. Sci. USA 99(26), 1653116536 (2002).
http://dx.doi.org/10.1073/pnas.262485199
12.
12. M. J. Anderson, C. L. Hansen, and S. R. Quake, Proc. Natl. Acad. Sci. USA 103(45), 1674616751 (2006).
http://dx.doi.org/10.1073/pnas.0605293103
13.
13. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett. 86(18), 41634166 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.4163
14.
14. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir 19(22), 91279133 (2003).
http://dx.doi.org/10.1021/la030090w
15.
15. B. Zheng, L. S. Roach, and R. F. Ismagilov, J. Am. Chem. Soc. 125(37), 1117011171 (2003).
http://dx.doi.org/10.1021/ja037166v
16.
16.See http://www.emeraldbiosystems.com/t-mpcsplugmaker.aspx for Emerald Biosystems' Microcapillary Protein Crystallization System.
17.
17. J. Q. Boedicker, M. E. Vincent, and R. F. Ismagilov, Angew. Chem., Int. Ed. Engl. 48(32), 59085911 (2009).
http://dx.doi.org/10.1002/anie.200901550
18.
18. M. C. Park, J. Y. Hur, K. W. Kwon, S.-H. Park, and K. Y. Suh, Lab Chip 6(8), 988994 (2006).
http://dx.doi.org/10.1039/b602961b
19.
19. Y. Marcy, C. Ouverney, E. M. Bik, T. Losekann, N. Ivanova, H. G. Martin, E. Szeto, D. Platt, P. Hugenholtz, D. A. Relman, and S. R. Quake, Proc. Natl. Acad. Sci. USA 104(29), 1188911894 (2007).
http://dx.doi.org/10.1073/pnas.0704662104
20.
20. Y. Marcy, T. Ishoey, R. S. Lasken, T. B. Stockwell, B. P. Walenz, A. L. Halpern, K. Y. Beeson, S. M. Goldberg, and S. R. Quake, PLoS Genet. 3(9), 17021708 (2007).
http://dx.doi.org/10.1371/journal.pgen.0030155
21.
21. L. Y. Yeo and J. R. Friend, Biomicrofluidics 3(1), 012002012023 (2009).
http://dx.doi.org/10.1063/1.3056040
22.
22. S. Girardo, M. Cecchini, F. Beltram, R. Cingolani, and D. Pisignano, Lab Chip 8(9), 15571563 (2008).
http://dx.doi.org/10.1039/b803967d
23.
23. X. Ding, S.-C. S. Lin, M. I. Lapsley, S. Li, X. Guo, C. Y. Chan, I. K. Chiang, L. Wang, J. P. McCoy, and T. J. Huang, Lab Chip 12(21), 42284231 (2012).
http://dx.doi.org/10.1039/c2lc40751e
24.
24. J. Nam, H. Lim, C. Kim, J. Y. Kang, and S. Shin, Biomicrofluidics 6(2), 024120102412010 (2012).
http://dx.doi.org/10.1063/1.4718719
25.
25. B. S. Cho, T. G. Schuster, X. Y. Zhu, D. Chang, G. D. Smith, and S. Takayama, Anal. Chem. 75(7), 16711675 (2003).
http://dx.doi.org/10.1021/ac020579e
26.
26. S. Wang, K. Liu, J. Liu, Z. T. F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y.-K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H.-R. Tseng, Angew. Chem., Int. Ed. 50(13), 30843088 (2011).
http://dx.doi.org/10.1002/anie.201005853
27.
27. S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, Nat. Methods 8(3), 242U283 (2011).
http://dx.doi.org/10.1038/nmeth.1569
28.
28. Y. Men, Y. Fu, Z. Chen, P. A. Sims, W. J. Greenleaf, and Y. Huang, Anal. Chem. 84(10), 42624266 (2012).
http://dx.doi.org/10.1021/ac300761n
29.
29. E. A. Ottesen, J. W. Hong, S. R. Quake, and J. R. Leadbetter, Science 314(5804), 14641467 (2006).
http://dx.doi.org/10.1126/science.1131370
30.
30. I. E. Araci and S. R. Quake, Lab Chip 12(16), 28032806 (2012).
http://dx.doi.org/10.1039/c2lc40258k
31.
31. C. Jäckel, P. Kast, and D. Hilvert, Annu. Rev. Biophys. 37(1), 153173 (2008).
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
32.
32. J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J. C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, and D. A. Weitz, Proc. Natl. Acad. Sci. USA 107(9), 40044009 (2010).
http://dx.doi.org/10.1073/pnas.0910781107
33.
33. X. Z. Niu, F. Gielen, J. B. Edel, and A. J. deMello, Nat. Chem. 3(6), 437442 (2011).
http://dx.doi.org/10.1038/nchem.1046
34.
34. A. R. Wu, T. L. A. Kawahara, N. A. Rapicavoli, J. van Riggelen, E. H. Shroff, L. W. Xu, D. W. Felsher, H. Y. Chang, and S. R. Quake, Lab Chip 12(12), 21902198 (2012).
http://dx.doi.org/10.1039/c2lc21290k
35.
35. J. Wang, G. Sui, V. P. Mocharla, R. J. Lin, M. E. Phelps, H. C. Kolb, and H.-R. Tseng, Angew. Chem., Int. Ed. 45(32), 52765281 (2006).
http://dx.doi.org/10.1002/anie.200601677
36.
36. Y. Wang, W. Y. Lin, K. Liu, R. J. Lin, M. Selke, H. C. Kolb, N. Zhang, X. Z. Zhao, M. E. Phelps, C. K. Shen, K. F. Faull, and H. R. Tseng, Lab Chip 9(16), 22812285 (2009).
http://dx.doi.org/10.1039/b907430a
37.
37. K. A. Heyries, C. Tropini, M. Vaninsberghe, C. Doolin, O. I. Petriv, A. Singhal, K. Leung, C. B. Hughesman, and C. L. Hansen, Nat. Methods 8(8), 649651 (2011).
http://dx.doi.org/10.1038/nmeth.1640
38.
38. J. C. Love, J. L. Ronan, G. M. Grotenbreg, A. G. van der Veen, and H. L. Ploegh, Nat. Biotechnol. 24(6), 703707 (2006).
http://dx.doi.org/10.1038/nbt1210
39.
39. A. O. Ogunniyi, C. M. Story, E. Papa, E. Guillen, and J. C. Love, Nat. Protoc. 4(5), 767782 (2009).
http://dx.doi.org/10.1038/nprot.2009.40
40.
40. N. Varadarajan, D. S. Kwon, K. M. Law, A. O. Ogunniyi, M. N. Anahtar, J. M. Richter, B. D. Walker, and J. C. Love, Proc. Natl. Acad. Sci. USA 109(10), 38853890 (2012).
http://dx.doi.org/10.1073/pnas.1111205109
41.
41. Q. Han, N. Bagheri, E. M. Bradshaw, D. A. Hafler, D. A. Lauffenburger, and J. C. Love, Proc. Natl. Acad. Sci. USA 109(5), 16071612 (2012).
http://dx.doi.org/10.1073/pnas.1117194109
42.
42. W. Zhao, S. Schafer, J. Choi, Y. J. Yamanaka, M. L. Lombardi, S. Bose, A. L. Carlson, J. A. Phillips, W. Teo, I. A. Droujinine, C. H. Cui, R. K. Jain, J. Lammerding, J. C. Love, C. P. Lin, D. Sarkar, R. Karnik, and J. M. Karp, Nat. Nanotechnol. 6(8), 524531 (2011).
http://dx.doi.org/10.1038/nnano.2011.101
43.
43. Q. Shi, L. Qin, W. Wei, F. Geng, R. Fan, Y. S. Shin, D. Guo, L. Hood, P. S. Mischel, and J. R. Heath, Proc. Natl. Acad. Sci. USA 109(2), 419424 (2012).
http://dx.doi.org/10.1073/pnas.1110865109
44.
44. Y. S. Shin, H. Ahmad, Q. Shi, H. Kim, T. A. Pascal, R. Fan, W. A. Goddard III, and J. R. Heath, ChemPhysChem 11(14), 30633069 (2010).
http://dx.doi.org/10.1002/cphc.201000528
45.
45. C. Ma, R. Fan, H. Ahmad, Q. Shi, B. Comin-Anduix, T. Chodon, R. C. Koya, C. C. Liu, G. A. Kwong, C. G. Radu, A. Ribas, and J. R. Heath, Nat. Med. 17(6), 738743 (2011).
http://dx.doi.org/10.1038/nm.2375
46.
46. S. J. Maerkl and S. R. Quake, Science 315(5809), 233237 (2007).
http://dx.doi.org/10.1126/science.1131007
47.
47. S. J. Maerkl and S. R. Quake, Proc. Natl. Acad. Sci. USA 106(44), 1865018655 (2009).
http://dx.doi.org/10.1073/pnas.0907688106
48.
48. D. Gerber, S. J. Maerkl, and S. R. Quake, Nat. Methods 6(1), 7174 (2009).
http://dx.doi.org/10.1038/nmeth.1289
49.
49. M. Meier, R. Sit, W. Pan, and S. R. Quake, Anal. Chem. 84(21), 95729578 (2012).
http://dx.doi.org/10.1021/ac302436y
50.
50. M. Meier, R. V. Sit, and S. R. Quake, Proc. Natl. Acad. Sci. USA 110(2), 477482 (2013).
http://dx.doi.org/10.1073/pnas.1210634110
51.
51. S. Einav, D. Gerber, P. D. Bryson, E. H. Sklan, M. Elazar, S. J. Maerkl, J. S. Glenn, and S. R. Quake, Nat. Biotechnol. 26(9), 10191027 (2008).
http://dx.doi.org/10.1038/nbt.1490
52.
52. L. Martin, M. Meier, S. M. Lyons, R. V. Sit, W. F. Marzluff, S. R. Quake, and H. Y. Chang, Nat. Methods 9, 11921194 (2012).
http://dx.doi.org/10.1038/nmeth.2225
53.
53. A. W. Martinez, S. T. Phillips, E. Carrilho, S. W. Thomas III, H. Sindi, and G. M. Whitesides, Anal. Chem. 80(10), 36993707 (2008).
http://dx.doi.org/10.1021/ac800112r
54.
54.See http://www.stanford.edu/group/foundry/ for Stanford Microfluidic Foundry website.
55.
55.See http://microfluidics.lbl.gov/ for Lawrence Berkeley National Lab Microfluidics Lab website (R. Gómez-Sjöberg).
56.
56. P. G. Vekilov and A. A. Chernov, in Solid State Physics, edited by E. Henry and S. Frans (Academic, 2003), Vol. 57, pp. 1147.
57.
57. A. M. Streets and S. R. Quake, Phys. Rev. Lett. 104(17), 178102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.178102
58.
58. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, Nature 446(7139), 10661069 (2007).
http://dx.doi.org/10.1038/nature05741
59.
59. W. H. Grover, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, and S. R. Manalis, Proc. Natl. Acad. Sci. USA 108(27), 1099210996 (2011).
http://dx.doi.org/10.1073/pnas.1104651108
60.
60. S. Son, A. Tzur, Y. Weng, P. Jorgensen, J. Kim, M. W. Kirschner, and S. R. Manalis, Nat. Methods 9(9), 910912 (2012).
http://dx.doi.org/10.1038/nmeth.2133
61.
61. F. K. Balagadde, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, Science 309(5731), 137140 (2005).
http://dx.doi.org/10.1126/science.1109173
62.
62. R. Gomez-Sjoberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, and S. R. Quake, Anal. Chem. 79(22), 85578563 (2007).
http://dx.doi.org/10.1021/ac071311w
63.
63. S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M. W. Covert, Nature 466(7303), 267271 (2010).
http://dx.doi.org/10.1038/nature09145
64.
64. C. B. Rohde, F. Zeng, R. Gonzalez-Rubio, M. Angel, and M. F. Yanik, Proc. Natl. Acad. Sci. USA 104(35), 1389113895 (2007).
http://dx.doi.org/10.1073/pnas.0706513104
65.
65. H. Ma, L. Jiang, W. Shi, J. Qin, and B. Lin, Biomicrofluidics 3(4), 044114044118 (2009).
http://dx.doi.org/10.1063/1.3274313
66.
66. X. C. i Solvas, F. M. Geier, A. M. Leroi, J. G. Bundy, J. B. Edel, and A. J. deMello, Chem. Commun. 47(35), 98019803 (2011).
http://dx.doi.org/10.1039/c1cc14076k
67.
67. K. Chung, M. M. Crane, and H. Lu, Nat. Methods 5(7), 637643 (2008).
http://dx.doi.org/10.1038/nmeth.1227
68.
68. M. M. Crane, J. N. Stirman, C. Y. Ou, P. T. Kurshan, J. M. Rehg, K. Shen, and H. Lu, Nat. Methods 9(10), 977980 (2012).
http://dx.doi.org/10.1038/nmeth.2141
69.
69. P. C. Blainey, A. C. Mosier, A. Potanina, C. A. Francis, and S. R. Quake, PLoS ONE 6(2), e16626 (2011).
http://dx.doi.org/10.1371/journal.pone.0016626
70.
70. I. P. Marshall, P. C. Blainey, A. M. Spormann, and S. R. Quake, Appl. Environ. Microbiol. 78(24), 85558563 (2012).
http://dx.doi.org/10.1128/AEM.02314-12
71.
71. N. H. Youssef, P. C. Blainey, S. R. Quake, and M. S. Elshahed, Applied Appl. Environ. Microbiol. 77(21), 78047814 (2011).
http://dx.doi.org/10.1128/AEM.06059-11
72.
72. S. J. Pamp, E. D. Harrington, S. R. Quake, D. A. Relman, and P. C. Blainey, Genome Res. 22(6), 11071119 (2012).
http://dx.doi.org/10.1101/gr.131482.111
73.
73. H. C. Fan, J. Wang, A. Potanina, and S. R. Quake, Nat. Biotechnol. 29(1), 5157 (2011).
http://dx.doi.org/10.1038/nbt.1739
74.
74. J. Wang, H. C. Fan, B. Behr, and S. R. Quake, Cell 150(2), 402412 (2012).
http://dx.doi.org/10.1016/j.cell.2012.06.030
75.
75. R. S. Lasken, Nat. Rev. Microbiol. 10(9), 631640 (2012).
http://dx.doi.org/10.1038/nrmicro2857
76.
76. V. Lecault, A. K. White, A. Singhal, and C. L. Hansen, Curr. Opin. Chem. Biol. 16(3–4), 381390 (2012).
http://dx.doi.org/10.1016/j.cbpa.2012.03.022
77.
77. H. Yin and D. Marshall, Curr. Opin Biotechnol. 23(1), 110119 (2012).
http://dx.doi.org/10.1016/j.copbio.2011.11.002
78.
78. R. N. Zare and S. Kim, Annu. Rev. Biomed. Eng. 12, 187201 (2010).
http://dx.doi.org/10.1146/annurev-bioeng-070909-105238
79.
79. D. Ryan, K. Ren, and H. Wu, Biomicrofluidics 5(2), 021501021509 (2011).
http://dx.doi.org/10.1063/1.3574448
80.
80. K. Leung, H. Zahn, T. Leaver, K. M. Konwar, N. W. Hanson, A. P. Page, C. C. Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen, Proc. Natl. Acad. Sci. USA 109(20), 76657670 (2012).
http://dx.doi.org/10.1073/pnas.1106752109
81.
81. V. Lecault, M. Vaninsberghe, S. Sekulovic, D. J. Knapp, S. Wohrer, W. Bowden, F. Viel, T. McLaughlin, A. Jarandehei, M. Miller, D. Falconnet, A. K. White, D. G. Kent, M. R. Copley, F. Taghipour, C. J. Eaves, R. K. Humphries, J. M. Piret, and C. L. Hansen, Nat. Methods 8(7), 581586 (2011).
http://dx.doi.org/10.1038/nmeth.1614
82.
82. G. W. Li and X. S. Xie, Nature 475(7356), 308315 (2011).
http://dx.doi.org/10.1038/nature10315
83.
83. L. Cai, N. Friedman, and X. S. Xie, Nature 440(7082), 358362 (2006).
http://dx.doi.org/10.1038/nature04599
84.
84. Y. Taniguchi, P. J. Choi, G. W. Li, H. Chen, M. Babu, J. Hearn, A. Emili, and X. S. Xie, Science 329(5991), 533538 (2010).
http://dx.doi.org/10.1126/science.1188308
85.
85. T. Kalisky and S. R. Quake, Nat. Methods 8(4), 311314 (2011).
http://dx.doi.org/10.1038/nmeth0411-311
86.
86. P. Dalerba, T. Kalisky, D. Sahoo, P. S. Rajendran, M. E. Rothenberg, A. A. Leyrat, S. Sim, J. Okamoto, D. M. Johnston, D. Qian, M. Zabala, J. Bueno, N. F. Neff, J. Wang, A. A. Shelton, B. Visser, S. Hisamori, Y. Shimono, M. van de Wetering, H. Clevers, M. F. Clarke, and S. R. Quake, Nat. Biotechnol. 29(12), 11201127 (2011).
http://dx.doi.org/10.1038/nbt.2038
87.
87. Y. Buganim, D. A. Faddah, A. W. Cheng, E. Itskovich, S. Markoulaki, K. Ganz, S. L. Klemm, A. van Oudenaarden, and R. Jaenisch, Cell 150(6), 12091222 (2012).
http://dx.doi.org/10.1016/j.cell.2012.08.023
88.
88.Recently acquired by PerkinElmer.
90.
90.See http://www.genomics.agilent.com for Agilent.
91.
91. R. A. White III, S. R. Quake, and K. Curr, J. Virol. Methods 179(1), 4550 (2012).
http://dx.doi.org/10.1016/j.jviromet.2011.09.017
92.
92. A. D. Tadmor, E. A. Ottesen, J. R. Leadbetter, and R. Phillips, Science 333(6038), 5862 (2011).
http://dx.doi.org/10.1126/science.1200758
93.
93. H. C. Fan and S. R. Quake, Anal. Chem. 79(19), 75767579 (2007).
http://dx.doi.org/10.1021/ac0709394
94.
94. T. M. Snyder, K. K. Khush, H. A. Valantine, and S. R. Quake, Proc. Natl. Acad. Sci. USA 108(15), 62296234 (2011).
http://dx.doi.org/10.1073/pnas.1013924108
95.
95. L. M. Boettger, R. E. Handsaker, M. C. Zody, and S. A. McCarroll, Nat. Genet. 44(8), 881885 (2012).
http://dx.doi.org/10.1038/ng.2334
96.
96. R. Tewhey, J. B. Warner, M. Nakano, B. Libby, M. Medkova, P. H. David, S. K. Kotsopoulos, M. L. Samuels, J. B. Hutchison, J. W. Larson, E. J. Topol, M. P. Weiner, O. Harismendy, J. Olson, D. R. Link, and K. A. Frazer, Nat. Biotechnol. 27(11), 10251031 (2009).
http://dx.doi.org/10.1038/nbt.1583
97.
97. B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia, A. J. Makarewicz, I. J. Bright, M. Y. Lucero, A. L. Hiddessen, T. C. Legler, T. K. Kitano, M. R. Hodel, J. F. Petersen, P. W. Wyatt, E. R. Steenblock, P. H. Shah, L. J. Bousse, C. B. Troup, J. C. Mellen, D. K. Wittmann, N. G. Erndt, T. H. Cauley, R. T. Koehler, A. P. So, S. Dube, K. A. Rose, L. Montesclaros, S. Wang, D. P. Stumbo, S. P. Hodges, S. Romine, F. P. Milanovich, H. E. White, J. F. Regan, G. A. Karlin–Neumann, C. M. Hindson, S. Saxonov, and B. W. Colston, Anal. Chem. 83(22), 86048610 (2011).
http://dx.doi.org/10.1021/ac202028g
98.
98. D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, Lab Chip 11(13), 21562166 (2011).
http://dx.doi.org/10.1039/c1lc20128j
99.
99. T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P. Snyder, and A. E. Barron, Anal. Chem. 83(12), 43274341 (2011).
http://dx.doi.org/10.1021/ac2010857
100.
100. G. M. Whitesides, Nature 442(7101), 368373 (2006).
http://dx.doi.org/10.1038/nature05058
101.
101.See http://www.fluidigm.com/ for information about Fluidigm Corporation.
102.
102.See http://www.bio-rad.com/prd/en/US/LSR/PDP/M9HE3XE8Z/QX100-Droplet-Digital-PCR-System for Bio-Rad QX 100 Droplet Digital PCR system.
103.
103.See http://raindancetech.com/ for RainDance Technologies website.
105.
105.See http://www.iontorrent.com/ for Life Technologies iontorrent system.
106.
106.See http://www.illumina.com/ for Illumina Incorporated website.
107.
107.See http://www.helicosbio.com/ for Helicos Biosciences corporation website.
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4789751
Loading
/content/aip/journal/bmf/7/1/10.1063/1.4789751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/1/10.1063/1.4789751
2013-01-31
2014-09-01

Abstract

Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/1/1.4789751.html;jsessionid=9tmcmb1qk88ae.x-aip-live-02?itemId=/content/aip/journal/bmf/7/1/10.1063/1.4789751&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Chip in a lab: Microfluidics for next generation life science research
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/1/10.1063/1.4789751
10.1063/1.4789751
SEARCH_EXPAND_ITEM