1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Entropic depletion of DNA in triangular nanochannels
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/2/10.1063/1.4794371
1.
1. R. Riehn, M. Lu, Y. M. Wang, S. F. Lim, E. C. Cox, and R. H. Austin, Proc. Natl. Acad. Sci. U.S.A. 102, 10012 (2005).
http://dx.doi.org/10.1073/pnas.0503809102
2.
2. K. Jo, D. M. Dhingra, T. Odijk, J. J. de Pablo, M. D. Graham, R. Runnheim, D. Forrest, and D. C. Schwartz, Proc. Natl. Acad. Sci. U.S.A. 104, 2673 (2007).
http://dx.doi.org/10.1073/pnas.0611151104
3.
3. S. K. Das, M. D. Austin, M. C. Akana, P. Deshpande, H. Cao, and M. Xiao, Nucleic Acids Res. 38, e177 (2010).
http://dx.doi.org/10.1093/nar/gkq673
4.
4. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. de Pablo, K. Jo, and D. C. Schwartz, Lab Chip 11, 1721 (2011).
http://dx.doi.org/10.1039/c0lc00680g
5.
5. K. H. Rasmussen, R. Marie, J. M. Lange, W. E. Svendsen, A. Kristensen, and K. U. Mir, Lab Chip 11, 1431 (2011).
http://dx.doi.org/10.1039/c0lc00603c
6.
6. E. T. Lam, A. Hastie, C. Lin, D. Ehrlich, S. K. Das, M. D. Austin, P. Deshpande, H. Cao, N. Nagarajan, M. Xiao, and P. Y. Kwok, Nat. Biotechnol. 30, 771 (2012).
http://dx.doi.org/10.1038/nbt.2303
7.
7. W. Reisner, J. N. Pedersen, and R. H. Austin, Rep. Prog. Phys. 75, 106601 (2012).
http://dx.doi.org/10.1088/0034-4885/75/10/106601
8.
8. K. D. Dorfman, S. B. King, D. W. Olson, J. D. P. Thomas, and D. R. Tree, “ Beyond gel electrophoresis: Microfluidic separations, fluorescence burst analysis, and DNA stretching,” Chem. Rev. (published online).
http://dx.doi.org/10.1021/cr3002142
9.
9. D. Huh, K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama, Nature Mater. 6, 424 (2007).
http://dx.doi.org/10.1038/nmat1907
10.
10. E. Angeli, C. Manneschi, L. Repetto, G. Firpo, and U. Valbusa, Lab Chip 11, 2625 (2011).
http://dx.doi.org/10.1039/c1lc20411d
11.
11. P. Fanzio, V. Mussi, C. Manneschi, E. Angeli, G. Firpo, L. Repetto, and U. Valbusa, Lab Chip 11, 2961 (2011).
http://dx.doi.org/10.1039/c1lc20243j
12.
12. P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Cesaracciu, L. Repetto, and U. Valbusa, Sci. Rep. 2, 791 10.1038/srep00791 (2012).
http://dx.doi.org/10.1038/srep00791
13.
13. T. Odijk, Macromolecules 16, 1340 (1983).
http://dx.doi.org/10.1021/ma00242a015
14.
14. M. Daoud and P. G. de Gennes, J. Phys. (Paris) 38, 85 (1977).
http://dx.doi.org/10.1051/jphys:0197700380108500
15.
15. Y. Wang, D. R. Tree, and K. D. Dorfman, Macromolecules 44, 6594 (2011).
http://dx.doi.org/10.1021/ma201277e
16.
16. P. Cifra, J. Chem. Phys. 131, 224903 (2009).
http://dx.doi.org/10.1063/1.3271830
17.
17. P. Cifra, Z. Benková, and T. Bleha, J. Phys. Chem. B 113, 1843 (2009).
http://dx.doi.org/10.1021/jp806126r
18.
18. D. R. Tree, Y. Wang, and K. D. Dorfman, Phys. Rev. Lett. 108, 228105 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.228105
19.
19. P. Cifra, J. Chem. Phys. 136, 024902 (2012).
http://dx.doi.org/10.1063/1.3674304
20.
20. T. Odijk, J. Chem. Phys. 125, 204904 (2006).
http://dx.doi.org/10.1063/1.2400227
21.
21. Y. Wang, W. F. Reinhart, D. R. Tree, and K. D. Dorfman, Biomicrofluidics 6, 014101 (2012).
http://dx.doi.org/10.1063/1.3672691
22.
22. C. Bustamante, J. F. Marko, E. D. Siggia, and S. B. Smith, Science 265, 1599 (1994).
http://dx.doi.org/10.1126/science.8079175
23.
23. J. Wang and H. Gao, J. Chem. Phys. 123, 084906 (2005).
http://dx.doi.org/10.1063/1.2008233
24.
24. W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin, Phys. Rev. Lett. 94, 196101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.196101
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4794371 for tabulated simulation data. [Supplementary Material]
26.
26. T. Odijk, Phys. Rev. E 77, 060901R (2008).
http://dx.doi.org/10.1103/PhysRevE.77.060901
27.
27. Y. Zhang, J. J. de Pablo, and M. D. Graham, J. Chem. Phys. 136, 014901 (2012).
http://dx.doi.org/10.1063/1.3672103
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4794371
Loading
/content/aip/journal/bmf/7/2/10.1063/1.4794371
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/2/10.1063/1.4794371
2013-03-01
2014-08-22

Abstract

Using Monte Carlo simulations of a touching-bead model of double-stranded DNA, we show that DNA extension is enhanced in isosceles triangular nanochannels (relative to a circular nanochannel of the same effective size) due to entropic depletion in the channel corners. The extent of the enhanced extension depends non-monotonically on both the accessible area of the nanochannel and the apex angle of the triangle. We also develop a metric to quantify the extent of entropic depletion, thereby collapsing the extension data for circular, square, and various triangular nanochannels onto a single master curve for channel sizes in the transition between the Odijk and de Gennes regimes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/2/1.4794371.html;jsessionid=2aa3qkgsul8me.x-aip-live-03?itemId=/content/aip/journal/bmf/7/2/10.1063/1.4794371&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf

Most read this month

Article
content/aip/journal/bmf
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Entropic depletion of DNA in triangular nanochannels
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4794371
10.1063/1.4794371
SEARCH_EXPAND_ITEM