1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Review article: Fabrication of nanofluidic devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/2/10.1063/1.4794973
1.
1. J. C. T. Eijkel and A. v. d. Berg, “Nanofluidics: What is it and what can we expect from it?” Microfluid. Nanofluid. 1(3), 249267 (2005).
http://dx.doi.org/10.1007/s10404-004-0012-9
2.
2. W. Sparreboom, A. van den Berg, and J. C. Eijkel, “Principles and applications of nanofluidic transport,” Nat. Nanotechnol. 4(11), 713720 (2009).
http://dx.doi.org/10.1038/nnano.2009.332
3.
3. N. R. Tas, P. Mela, T. Kramer, J. W. Berenschot, and A. van den Berg, “Capillarity induced negative pressure of water plugs in nanochannels,” Nano Lett. 3(11), 15371540 (2003).
http://dx.doi.org/10.1021/nl034676e
4.
4. C. Duan, R. Karnik, M. C. Lu, and A. Majumdar, “Evaporation-induced cavitation in nanofluidic channels,” Proc. Natl. Acad. Sci. U.S.A. 109(10), 36833693 (2012).
http://dx.doi.org/10.1073/pnas.1014075109
5.
5. R. Karnik, K. Castelino, C. H. Duan, and A. Majumdar, “Diffusion-limited patterning of molecules in nanofluidic channels,” Nano Lett. 6(8), 17351740 (2006).
http://dx.doi.org/10.1021/nl061159y
6.
6. H. C. Chang and G. Yossifon, “Understanding electrokinetics at the nanoscale: A perspective,” Biomicrofluidics 3(1), 012001 (2009).
http://dx.doi.org/10.1063/1.3056045
7.
7. D. Stein, M. Kruithof, and C. Dekker, “Surface-charge-governed ion transport in nanofluidic channels,” Phys. Rev. Lett. 93(3), 035901 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.035901
8.
8. J. O. Tegenfeldt, H. Cao, W. W. Reisner, C. Prinz, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Stretching DNA in nanochannels,” Biophys. J. 86(1), 596A (2004).
9.
9. P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 23262341 (2008).
http://dx.doi.org/10.1021/ac702296u
10.
10. R. Schoch, J. Han, and P. Renaud, “Transport phenomena in nanofluidics,” Rev. Mod. Phys. 80(3), 839883 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.839
11.
11. D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis,” Small 8(18), 27872801 (2012).
http://dx.doi.org/10.1002/smll.201200240
12.
12. H. Daiguji, P. Yang, A. J. Szeri, and A. Majumdar, “Electrochemomechanical energy conversion in nanofluidic channels,” Nano Lett. 4(12), 23152321 (2004).
http://dx.doi.org/10.1021/nl0489945
13.
13. D.-K. Kim, C. Duan, Y.-F. Chen, and A. Majumdar, “Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels,” Microfluid. Nanofluid. 9(6), 12151224 (2010).
http://dx.doi.org/10.1007/s10404-010-0641-0
14.
14. S. Moghaddam, E. Pengwang, Y. B. Jiang, A. R. Garcia, D. J. Burnett, C. J. Brinker, R. I. Masel, and M. A. Shannon, “An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure,” Nat. Nanotechnol. 5(3), 230236 (2010).
http://dx.doi.org/10.1038/nnano.2010.13
15.
15. S. J. Kim, S. H. Ko, K. H. Kang, and J. Han, “Direct seawater desalination by ion concentration polarization,” Nat. Nanotechnol. 5(4), 297301 (2010).
http://dx.doi.org/10.1038/nnano.2010.34
16.
16. J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, “Fast mass transport through sub-2-nanometer carbon nanotubes,” Science 312(5776), 10341037 (2006).
http://dx.doi.org/10.1126/science.1126298
17.
17. M. R. Powell, M. Sullivan, I. Vlassiouk, D. Constantin, O. Sudre, C. C. Martens, R. S. Eisenberg, and Z. S. Siwy, “Nanoprecipitation-assisted ion current oscillations,” Nat. Nanotechnol. 3(1), 5157 (2008).
http://dx.doi.org/10.1038/nnano.2007.420
18.
18. B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res. 34(1), 339372 (2004).
http://dx.doi.org/10.1146/annurev.matsci.34.052803.091100
19.
19. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev. 105(4), 11711196 (2005).
http://dx.doi.org/10.1021/cr030076o
20.
20. J. L. Perry and S. G. Kandlikar, “Review of fabrication of nanochannels for single phase liquid flow,” Microfluid. Nanofluid. 2(3), 185193 (2005).
http://dx.doi.org/10.1007/s10404-005-0068-1
21.
21. D. Mijatovic, J. C. Eijkel, and A. van den Berg, “Technologies for nanofluidic systems: Top-down vs. bottom-up–a review,” Lab Chip 5(5), 492500 (2005).
http://dx.doi.org/10.1039/b416951d
22.
22. C. Dekker, “Solid-state nanopores,” Nat. Nanotechnol. 2(4), 209215 (2007).
http://dx.doi.org/10.1038/nnano.2007.27
23.
23. S. Prakash, A. Piruska, E. N. Gatimu, P. W. Bohn, J. V. Sweedler, and M. A. Shannon, “Nanofluidic: Systems and applications,” IEEE Sens. J. 8(5), 441450 (2008).
http://dx.doi.org/10.1109/JSEN.2008.918758
24.
24. Y. Chen and A. Pepin, “Nanofabrication: Concentional and nonconventional methods,” Electrophoresis 22, 187207 (2001).
http://dx.doi.org/10.1002/1522-2683(200101)22:2<187::AID-ELPS187>3.0.CO;2-0
25.
25. J. M. Perry, K. Zhou, Z. D. Harms, and S. C. Jacobson, “Ion transport in nanofluidic funnels,” ACS Nano 4(7), 38973902 (2010).
http://dx.doi.org/10.1021/nn100692z
26.
26. S. H. Kim, Y. Cui, M. J. Lee, S. W. Nam, D. Oh, S. H. Kang, Y. S. Kim, and S. Park, “Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma,” Lab Chip 11(2), 348353 (2011).
http://dx.doi.org/10.1039/c0lc00015a
27.
27. R. Yokokawa, Y. Yoshida, S. Takeuchi, T. Kon, and H. Fujita, “Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel,” Nanotechnology 17(1), 289294 (2006).
http://dx.doi.org/10.1088/0957-4484/17/1/049
28.
28. A. Hibara, T. Saito, H. B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 61706176 (2002).
http://dx.doi.org/10.1021/ac025808b
29.
29. T. Tsukahara, W. Mizutani, K. Mawatari, and T. Kitamori, “NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces,” J. Phys. Chem. B 113(31), 1080810816 (2009).
http://dx.doi.org/10.1021/jp903275t
30.
30. E. Tamaki, A. Hibara, H. B. Kim, M. Tokeshi, and T. Kitamori, “Pressure-driven flow control system for nanofluidic chemical process,” J. Chromatogr. A 1137(2), 256262 (2006).
http://dx.doi.org/10.1016/j.chroma.2006.10.097
31.
31. Z. D. Harms, K. B. Mogensen, P. S. Nunes, K. Zhou, B. W. Hildenbrand, I. Mitra, Z. Tan, A. Zlotnick, J. P. Kutter, and S. C. Jacobson, “Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids,” Anal. Chem. 83(24), 95739578 (2011).
http://dx.doi.org/10.1021/ac202358t
32.
32. S. L. Levy, J. T. Mannion, J. Cheng, C. H. Reccius, and H. G. Craighead, “Entropic unfolding of DNA molecules in nanofluidic channels,” Nano Lett. 8(11), 38393844 (2008).
http://dx.doi.org/10.1021/nl802256s
33.
33. R. Riehn, R. H. Austin, and J. C. Sturm, “A nanofluidic railroad switch for DNA,” Nano Lett. 6(9), 19731976 (2006).
http://dx.doi.org/10.1021/nl061137b
34.
34. W. Reisner, J. Beech, N. Larsen, H. Flyvbjerg, A. Kristensen, and J. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.058302
35.
35. S. W. Nam, M. H. Lee, S. H. Lee, D. J. Lee, S. M. Rossnagel, and K. B. Kim, “Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition,” Nano Lett. 10(9), 33243329 (2010).
http://dx.doi.org/10.1021/nl100999e
36.
36. M. Fouad, M. Yavuz, and B. Cui, “Nanofluidic channels fabricated by e-beam lithography and polymer reflow sealing,” J. Vac. Sci. Technol. B 28(6), C6I11C6I13 (2010).
http://dx.doi.org/10.1116/1.3517620
37.
37. C. K. Tung, R. Riehn, and R. H. Austin, “Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes,” Biomicrofluidics 3(3), 031101 (2009).
http://dx.doi.org/10.1063/1.3212074
38.
38. A. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small 1(10), 924939 (2005).
http://dx.doi.org/10.1002/smll.200500113
39.
39. A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15R34 (2004).
http://dx.doi.org/10.1088/0960-1317/14/4/R01
40.
40. P. Chen, J. J. Gu, E. Brandin, Y. R. Kim, Q. Wang, and D. Branton, “Probing single DNA molecule transport using fabricated nanopores,” Nano Lett. 4(11), 22932298 (2004).
http://dx.doi.org/10.1021/nl048654j
41.
41. C. Danelon, C. Santschi, J. Brugger, and H. Vogel, “Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition,” Langmuir 22(25), 1071110715 (2006).
http://dx.doi.org/10.1021/la061321c
42.
42. V. Mussi, P. Fanzio, L. Repetto, G. Firpo, P. Scaruffi, S. Stigliani, G. P. Tonini, and U. Valbusa, “DNA-functionalized solid state nanopore for biosensing,” Nanotechnology 21(14), 145102 (2010).
http://dx.doi.org/10.1088/0957-4484/21/14/145102
43.
43. H. D. Tong, H. V. Jansen, V. J. Gadgil, C. G. Bostan, E. Berenschot, C. J. M. van Rijn, and M. Elwenspoek, “Silicon nitride nanosieve membrane,” Nano Lett. 4(2), 283287 (2004).
http://dx.doi.org/10.1021/nl0350175
44.
44. Z. P. Tian, K. Lu, and B. Chen, “Unique nanopore pattern formation by focused ion beam guided anodization,” Nanotechnology 21(40), 405301 (2010).
http://dx.doi.org/10.1088/0957-4484/21/40/405301
45.
45. D. M. Cannon, B. R. Flachsbart, M. A. Shannon, J. V. Sweedler, and P. W. Bohn, “Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates,” Appl. Phys. Lett. 85(7), 12411243 (2004).
http://dx.doi.org/10.1063/1.1780605
46.
46. A. A. Tseng, I. A. Insua, J. S. Park, B. Li, G. P. Vakanas, “Milling of submicron channels on gold layer using double charged arsenic ion beam,” J. Vac. Sci. Technol. B 22(1), 8289 (2004).
http://dx.doi.org/10.1116/1.1640396
47.
47. L. Guan, K. Peng, Y. Yang, X. Qiu, and C. Wang, “The nanofabrication of polydimethylsiloxane using a focused ion beam,” Nanotechnology 20(14), 145301 (2009).
http://dx.doi.org/10.1088/0957-4484/20/14/145301
48.
48. L. Frey, C. Lehrer, and H. Ryssel, “Nanoscale effects in focused ion beam processing,” Appl. Phys. A: Mater. Sci. Process. 76(7), 10171023 (2003).
http://dx.doi.org/10.1007/s00339-002-1943-1
49.
49. H.-W. Li, D.-J. Kang, M. G. Blamire, and W. T. Huck, “Focused ion beam fabrication of silicon print masters,” Nanotechnology 14, 220223 (2003).
http://dx.doi.org/10.1088/0957-4484/14/2/323
50.
50. T. Yamamoto and T. Fujii, “Nanofluidic single-molecule sorting of DNA: A new concept in separation and analysis of biomolecules towards ultimate level performance,” Nanotechnology 21(39), 395502 (2010).
http://dx.doi.org/10.1088/0957-4484/21/39/395502
51.
51. L. D. Menard and J. M. Ramsey, “Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling,” Nano Lett. 11(2), 512517 (2011).
http://dx.doi.org/10.1021/nl103369g
52.
52. T. Maleki, S. Mohammadi, and B. Ziaie, “A nanofluidic channel with embedded transverse nanoelectrodes,” Nanotechnology 20(10), 105302 (2009).
http://dx.doi.org/10.1088/0957-4484/20/10/105302
53.
53. A. A. Tseng, I. A. Insua, J.-S. Park, and C. D. Chen, “Milling yield estimation in focused ion beam milling of two-layer substrates,” J. Micromech. Microeng. 15(1), 2028 (2005).
http://dx.doi.org/10.1088/0960-1317/15/1/004
54.
54. E. Angeli, C. Manneschi, L. Repetto, G. Firpo, and U. Valbusa, “DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp,” Lab Chip 11(15), 26252629 (2011).
http://dx.doi.org/10.1039/c1lc20411d
55.
55. P. Fanzio, V. Mussi, C. Manneschi, E. Angeli, G. Firpo, L. Repetto, and U. Valbusa, “DNA detection with a polymeric nanochannel device,” Lab Chip 11(17), 29612966 (2011).
http://dx.doi.org/10.1039/c1lc20243j
56.
56. J. Wu, R. Chantiwas, A. Amirsadeghi, S. A. Soper, and S. Park, “Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps,” Lab Chip 11(17), 29842989 (2011).
http://dx.doi.org/10.1039/c1lc20294d
57.
57. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. 19(4), 495513 (2007).
http://dx.doi.org/10.1002/adma.200600882
58.
58. X. Li, X. Wang, J. Jin, Q. Tang, Y. Tian, S. Fu, and Z. Cui, “Fabrication of micro/nano fluidic system combining hybrid mask-mould lithography with thermal bonding,” Microelectron. Eng. 87(5–8), 722725 (2010).
http://dx.doi.org/10.1016/j.mee.2009.12.024
59.
59. B. Yang, V. R. Dukkipati, D. Li, B. L. Cardozo, S. W. Pang, “Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels,” J. Vac. Sci. Technol. B 25(6), 23522356 (2007).
http://dx.doi.org/10.1116/1.2806975
60.
60. L. H. Thamdrup, A. Klukowska, and A. Kristensen, “Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA,” Nanotechnology 19(12), 125301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/12/125301
61.
61. Y. H. Cho, J. Park, H. Park, X. Cheng, B. J. Kim, and A. Han, “Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing,” Microfluid. Nanofluid. 9(2–3), 163170 (2009).
http://dx.doi.org/10.1007/s10404-009-0509-3
62.
62. Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 38303833 (2008).
http://dx.doi.org/10.1021/nl802219b
63.
63. L. J. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1)6973 (2004).
http://dx.doi.org/10.1021/nl034877i
64.
64. R. Chantiwas, M. L. Hupert, S. R. Pullagurla, S. Balamurugan, J. Tamarit-Lopez, S. Park, P. Datta, J. Goettert, Y. K. Cho, and S. A. Soper, “Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits,” Lab Chip 10(23), 32553264 (2010).
http://dx.doi.org/10.1039/c0lc00096e
65.
65. M. B. Mikkelsen, A. A. Letailleur, E. Sondergard, E. Barthel, J. Teisseire, R. Marie, and A. Kristensen, “All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp,” Lab Chip 12(2), 262267 (2012).
http://dx.doi.org/10.1039/c1lc20689c
66.
66. N. R. Hendricks, J. J. Watkins, and K. R. Carter, “Formation of hierarchical silica nanochannels through nanoimprint lithography.J. Mater. Chem. 21(37), 1421314218 (2011).
http://dx.doi.org/10.1039/c1jm11493j
67.
67. R. M. Reano and S. W. Pang, “Sealed three-dimensional nanochannels,” J. Vac. Sci. Technol. B 23(6), 29952999 (2005).
http://dx.doi.org/10.1116/1.2121728
68.
68. X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 14721476 (2008).
http://dx.doi.org/10.1021/nl080473k
69.
69. D. Xia, Z. Ku, S. C. Lee, and S. R. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147179 (2011).
http://dx.doi.org/10.1002/adma.201001856
70.
70. Y. J. Oh, T. C. Gamble, D. Leonhardt, C. H. Chung, S. R. Brueck, C. F. Ivory, G. P. Lopez, D. N. Petsev, and S. M. Han, “Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide,” Lab Chip 8(2), 251258 (2008).
http://dx.doi.org/10.1039/b711682a
71.
71. Y. J. Oh, D. Bottenus, C. F. Ivory, and S. M. Han, “Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels,” Lab Chip 9(11), 16091617 (2009).
http://dx.doi.org/10.1039/b816384g
72.
72. M. J. O'Brien, P. Bisong, L. K. Ista, E. M. Rabinovich, A. L. Garcia, S. S. Sibbett, G. P. Lopez, and S. R. J. Brueck, “Fabrication of an integrated nanofluidic chip using interferometric lithography,” J. Vac. Sci. Technol. B 21(6), 29412945 (2003).
http://dx.doi.org/10.1116/1.1625964
73.
73. D. Bottenus, Y. J. Oh, S. M. Han, and C. F. Ivory, “Experimentally and theoretically observed native pH shifts in a nanochannel array,” Lab Chip 9(2), 219231 (2009).
http://dx.doi.org/10.1039/b803278e
74.
74. A. L. Garcia, L. K. Ista, D. N. Petsev, M. J. O'Brien, P. Bisong, A. A. Mammoli, S. R. Brueck, and G. P. Lopez, “Electrokinetic molecular separation in nanoscale fluidic channels,” Lab Chip 5(11), 12711276 (2005).
http://dx.doi.org/10.1039/b503914b
75.
75. Y. J. Oh, A. L. Garcia, D. N. Petsev, G. P. Lopez, S. R. Brueck, C. F. Ivory, and S. M. Han, “Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control,” Lab Chip 9(11), 16011608 (2009).
http://dx.doi.org/10.1039/b901382m
76.
76. Y. Zhang, T. C. Gamble, A. Neumann, G. P. Lopez, S. R. Brueck, and D. N. Petsev, “Electric field control and analyte transport in Si/SiO2 fluidic nanochannels,” Lab Chip 8(10), 16711675 (2008).
http://dx.doi.org/10.1039/b804256j
77.
77. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. dePablo, K. Jo, and D. C. Schwartz, “Nanochannel confinement: DNA stretch approaching full contour length,” Lab Chip 11(10), 17211729 (2011).
http://dx.doi.org/10.1039/c0lc00680g
78.
78. N. M. Elman, K. Daniel, F. Jalali-Yazdi, and M. J. Cima, “Super permeable nano-channel membranes defined with laser interferometric lithography,” Microfluid. Nanofluid. 8(4), 557563 (2009).
http://dx.doi.org/10.1007/s10404-009-0537-z
79.
79. H. M. Chen, L. Pang, M. S. Gordon, and Y. Fainman, “Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip,” Small 7(19), 27502757 (2011).
http://dx.doi.org/10.1002/smll.201100264
80.
80. G. Zhang and D. Wang, “Colloidal lithography–The art of nanochemical patterning,” Chem. Asian J. 4(2), 236245 (2009).
http://dx.doi.org/10.1002/asia.200800298
81.
81. Y. Li, W. Cai, and G. Duan, “Ordered micro/nanostructured arrays based on the monolayer colloidal crystals,” Chem. Mater. 20(3), 615624 (2008).
http://dx.doi.org/10.1021/cm701977g
82.
82. N. Vogel, C. K. Weiss, and K. Landfester, “From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography,” Soft Matter 8(15), 4044 (2012).
http://dx.doi.org/10.1039/c1sm06650a
83.
83. A. V. Whitney, B. D. Myers, and R. P. Van Duyne, “Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography,” Nano Lett. 4(8), 15071511 (2004).
http://dx.doi.org/10.1021/nl049345w
84.
84. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 31833190 (1992).
http://dx.doi.org/10.1021/la00048a054
85.
85. J. Huang, F. Kim, A. R. Tao, S. Connor, and P. Yang, “Spontaneous formation of nanoparticle stripe patterns through dewetting,” Nature Mater. 4(12), 896900 (2005).
http://dx.doi.org/10.1038/nmat1517
86.
86. C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
http://dx.doi.org/10.1063/1.2988893
87.
87. S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 29892994 (2010).
http://dx.doi.org/10.1021/nl101432r
88.
88. Z. X. Lu, A. Namboodiri, and M. M. Collinson, “Self-supporting nanopore membranes with controlled pore size and shape,” ACS Nano 2(5), 993999 (2008).
http://dx.doi.org/10.1021/nn8000017
89.
89. M. B. Stern, M. W. Geis, and J. E. Curtin, “Nanochannel fabrication for chemical sensors,” J. Vac. Sci. Technol. B 15(6), 28872891 (1997).
http://dx.doi.org/10.1116/1.589750
90.
90. R. Karnik, R. Fan, M. Yue, D. Li, P. Yang, and A. Majumdar, “Electrostatic control of ions and molecules in nanofluidic transistors,” Nano Lett. 5(5), 943948 (2005).
http://dx.doi.org/10.1021/nl050493b
91.
91. R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, “Effects of biological reactions and modifications on conductance of nanofluidic channels,” Nano Lett. 5(9), 16381642 (2005).
http://dx.doi.org/10.1021/nl050966e
92.
92. R. Karnik, K. Castelino, and A. Majumdar, “Field-effect control of protein transport in a nanofluidic transistor circuit,” Appl. Phys. Lett. 88(12), 123114 (2006).
http://dx.doi.org/10.1063/1.2186967
93.
93. R. Karnik, C. Duan, K. Castelino, H. Daiguji, and A. Majumdar, “Rectification of ionic current in a nanofluidic diode,” Nano Lett. 7(3), 547551 (2007).
http://dx.doi.org/10.1021/nl062806o
94.
94. L. J. Cheng and L. J. Guo, “Rectified ion transport through concentration gradient in homogeneous silica nanochannels,” Nano Lett. 7(10), 31653171 (2007).
http://dx.doi.org/10.1021/nl071770c
95.
95. R. A. Barton, B. Ilic, S. S. Verbridge, B. R. Cipriany, J. M. Parpia, and H. G. Craighead, “Fabrication of a nanomechanical mass sensor containing a nanofluidic channel,” Nano Lett. 10(6), 20582063 (2010).
http://dx.doi.org/10.1021/nl100193g
96.
96. T. S. Hug, N. F. de Rooij, and U. Staufer, “Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels,” Microfluid. Nanofluid. 2(2), 117124 (2006).
http://dx.doi.org/10.1007/s10404-005-0051-x
97.
97. C. Shen, V. R. S. S. Mokkapati, H. T. M. Pham, and P. M. Sarro, “Micromachined nanofiltration modules for lab-on-a-chip applications,” J. Micromech. Microeng. 22(2), 025003 (2012).
http://dx.doi.org/10.1088/0960-1317/22/2/025003
98.
98. J. C. Eijkel, J. Bomer, N. R. Tas, and A. van den Berg, “1-D nanochannels fabricated in polyimide,” Lab Chip 4(3), 161163 (2004).
http://dx.doi.org/10.1039/b315859d
99.
99. M. N. Hamblin, A. R. Hawkins, D. Murray, D. Maynes, M. L. Lee, A. T. Woolley, and H. D. Tolley, “Capillary flow in sacrificially etched nanochannels,” Biomicrofluidics 5(2), 021103 (2011).
http://dx.doi.org/10.1063/1.3602858
100.
100. K. P. Nichols, J. C. Eijkel, and H. J. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173175 (2008).
http://dx.doi.org/10.1039/b715917j
101.
101. M. A. Zevenbergen, P. S. Singh, E. D. Goluch, B. L. Wolfrum, and S. G. Lemay, “Stochastic sensing of single molecules in a nanofluidic electrochemical device,” Nano Lett. 11(7), 28812886 (2011).
http://dx.doi.org/10.1021/nl2013423
102.
102. M. N. Hamblin, J. Xuan, D. Maynes, H. D. Tolley, D. M. Belnap, A. T. Woolley, M. L. Lee, and A. R. Hawkins, “Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels,” Lab Chip 10(2), 173178 (2010).
http://dx.doi.org/10.1039/b916746c
103.
103. W. Sparreboom, J. C. Eijkel, J. Bomer, and A. van den Berg, “Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes,” Lab Chip 8(3), 402407 (2008).
http://dx.doi.org/10.1039/b716382g
104.
104. R. Sordan, A. Miranda, F. Traversi, D. Colombo, D. Chrastina, G. Isella, M. Masserini, L. Miglio, K. Kern, and K. Balasubramanian, “Vertical arrays of nanofluidic channels fabricated without nanolithography,” Lab Chip 9(11), 15561560 (2009).
http://dx.doi.org/10.1039/b819520j
105.
105. H. Zeng, Z. Wan, and A. D. Feinerman, “Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals,” Nanotechnology 17(13), 31833188 (2006).
http://dx.doi.org/10.1088/0957-4484/17/13/018
106.
106. C. Peng and S. W. Pang, “Three-dimensional nanochannels formed by fast etching of polymer,” J. Vac. Sci. Technol. B 24(4), 19411946 (2006).
http://dx.doi.org/10.1116/1.2221319
107.
107. S. Wang, X. Hu, and L. J. Lee, “Electrokinetics induced asymmetric transport in polymeric nanonozzles,” Lab Chip 8(4), 573581 (2008).
http://dx.doi.org/10.1039/b719410b
108.
108. L. M. Bellan, E. A. Strychalski, and H. G. Craighead, “Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers,” J. Vac. Sci. Technol. B 26(5), 17281731 (2008).
http://dx.doi.org/10.1116/1.2975199
109.
109. S. Lee, K. Limkrailassiri, Y. Gao, C. Chang, and L. W. Lin, “Chip-to-chip fluidic connectors via near-field electrospinning,” in Proceedings of IEEE MicroElectroMechanical Systems (IEEE, 2007), pp. 252255.
110.
110. J. Guan, P. E. Boukany, O. Hemminger, N. R. Chiou, W. Zha, M. Cavanaugh, and L. J. Lee, “Large laterally ordered nanochannel arrays from DNA combing and imprinting,” Adv. Mater. 22(36), 39974001 (2010).
http://dx.doi.org/10.1002/adma.201000136
111.
111. P. E. Boukany, A. Morss, W. C. Liao, B. Henslee, H. Jung, X. Zhang, B. Yu, X. Wang, Y. Wu, L. Li, K. Gao, X. Hu, X. Zhao, O. Hemminger, W. Lu, G. P. Lafyatis, and L. J. Lee, “Nanochannel electroporation delivers precise amounts of biomolecules into living cells,” Nat. Nanotechnol. 6(11), 747754 (2011).
http://dx.doi.org/10.1038/nnano.2011.164
112.
112. N. R. Devlin and D. K. Brown, “Fabricating millimeter to nanometer sized cavities concurrently for nanofluidic devices,” J. Vac. Sci. Technol. B 28(6), C6I7C6I10 (2010).
http://dx.doi.org/10.1116/1.3517701
113.
113. N. R. Devlin, D. K. Brown, and P. A. Kohl, “Patterning decomposable polynorbornene with electron beam lithography to create nanochannels,” J. Vac. Sci. Technol. B 27(6), 25082511 (2009).
http://dx.doi.org/10.1116/1.3264658
114.
114. C. K. Harnett, G. W. Coates, and H. G. Craighead, “Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics,” J. Vac. Sci. Technol. B 19(6), 28422845 (2001).
http://dx.doi.org/10.1116/1.1409383
115.
115. X. T. Huang, C. Gupta, and S. Pennathur, “A novel fabrication method for centimeter-long surface-micromachined nanochannels,” J. Micromech. Microeng. 20(1), 015040 (2010).
http://dx.doi.org/10.1088/0960-1317/20/1/015040
116.
116. H. T. Hoang, H. D. Tong, I. M. Segers-Nolten, N. R. Tas, V. Subramaniam, and M. C. Elwenspoek, “Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules,” J. Colloid Interface Sci. 367(1), 455459 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.10.001
117.
117. A. Grattoni, D. Fine, E. Zabre, A. Ziemys, J. Gill, Y. Mackeyev, M. A. Cheney, D. C. Danila, S. Hosali, L. J. Wilson, F. Hussain, and M. Ferrari, “Gated and near-surface diffusion of charged fullerenes in nanochannels,” ACS Nano 5(12), 93829391 (2011).
http://dx.doi.org/10.1021/nn2037863
118.
118. H. T. Hoang, I. M. Segers-Nolten, J. W. Berenschot, M. J. de Boer, N. R. Tas, J. Haneveld, and M. C. Elwenspoek, “Fabrication and interfacing of nanochannel devices for single-molecule studies,” J. Micromech. Microeng. 19(6), 065017 (2009).
http://dx.doi.org/10.1088/0960-1317/19/6/065017
119.
119. J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, “Wet anisotropic etching for fluidic 1D nanochannels,” J. Micromech. Microeng. 13(4), S62S66 (2003).
http://dx.doi.org/10.1088/0960-1317/13/4/310
120.
120. M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced Raman spectroscopy,” Lab Chip 7(5), 630632 (2007).
http://dx.doi.org/10.1039/b618105h
121.
121. Y. C. Wang and J. Han, “Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator,” Lab Chip 8(3), 392394 (2008).
http://dx.doi.org/10.1039/b717220f
122.
122. R. B. Veenhuis, E. J. van der Wouden, J. W. van Nieuwkasteele, A. van den Berg, and J. C. Eijkel, “Field-effect based attomole titrations in nanoconfinement,” Lab Chip 9(24), 34723480 (2009).
http://dx.doi.org/10.1039/b913384d
123.
123. D. Kim, A. Raj, L. Zhu, R. I. Masel, and M. A. Shannon, “Non-equilibrium electrokinetic micro/nano fluidic mixer,” Lab Chip 8(4), 625628 (2008).
http://dx.doi.org/10.1039/b717268k
124.
124. S. J. Lee and D. Kim, “Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena,” Microfluid. Nanofluid. 12, 897906 (2011).
http://dx.doi.org/10.1007/s10404-011-0918-y
125.
125. C. Duan and A. Majumdar, “Anomalous ion transport in 2-nm hydrophilic nanochannels,” Nat. Nanotechnol. 5(12), 848852 (2010).
http://dx.doi.org/10.1038/nnano.2010.233
126.
126. P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520522 (2007).
http://dx.doi.org/10.1039/b616134k
127.
127. K.-D. Huang and R.-J. Yang, “Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel,” Microfluid. Nanofluid. 5(5), 631638 (2008).
http://dx.doi.org/10.1007/s10404-008-0281-9
128.
128. Z. Xu, J.-K. Wen, C. Liu, J.-S. Liu, L.-Q. Du, and L.-D. Wang, “Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels,” Microfluid. Nanofluid. 7(3), 423429 (2009).
http://dx.doi.org/10.1007/s10404-009-0407-8
129.
129. L. Shui, A. Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 8792 (2011).
http://dx.doi.org/10.1007/s10404-011-0776-7
130.
130. Q. S. Pu, J. S. Yun, H. Temkin, and S. R. Liu, “Ion-enrichment and ion-depletion effect of nanochannel structures,” Nano Lett. 4(6), 10991103 (2004).
http://dx.doi.org/10.1021/nl0494811
131.
131. S. Liu, Q. Pu, L. Gao, C. Korzeniewski, and C. Matzke, “From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell,” Nano Lett. 5(7), 13891393 (2005).
http://dx.doi.org/10.1021/nl050712t
132.
132. R. B. Schoch, L. F. Cheow, and J. Han, “Electrical detection of fast reaction kinetics in nanochannels with an induced flow,” Nano Lett. 7(12), 38953900 (2007).
http://dx.doi.org/10.1021/nl0724788
133.
133. J. J. Jones, J. R. van der Maarel, and P. S. Doyle, “Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent,” Nano Lett. 11(11), 50475053 (2011).
http://dx.doi.org/10.1021/nl203114f
134.
134. I. H. Chou, M. Benford, H. T. Beier, G. L. Cote, M. Wang, N. Jing, J. Kameoka, and T. A. Good, “Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy,” Nano Lett. 8(6), 17291735 (2008).
http://dx.doi.org/10.1021/nl0808132
135.
135. D. Stein, Z. Deurvorst, F. H. van der Heyden, W. J. Koopmans, A. Gabel, and C. Dekker, “Electrokinetic concentration of DNA polymers in nanofluidic channels,” Nano Lett. 10(3), 765772 (2010).
http://dx.doi.org/10.1021/nl902228p
136.
136. P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837844 (2005).
http://dx.doi.org/10.1039/b502809d
137.
137. K. Pappaert, J. Biesemans, D. Clicq, S. Vankrunkelsven, and G. Desmet, “Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows,” Lab Chip 5(10), 11041110 (2005).
http://dx.doi.org/10.1039/b505122c
138.
138. N. F. Y. Durand, A. Bertsch, M. Todorova, and P. Renaud, “Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects,” Appl. Phys. Lett. 91(20), 203106 (2007).
http://dx.doi.org/10.1063/1.2801625
139.
139. N. F. Durand and P. Renaud, “Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel,” Lab Chip 9(2), 319324 (2009).
http://dx.doi.org/10.1039/b811006a
140.
140. A. Plecis, R. B. Schoch, and P. Renaud, “Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip,” Nano Lett. 5(6), 11471155 (2005).
http://dx.doi.org/10.1021/nl050265h
141.
141. R. B. Schoch, A. Bertsch, and P. Renaud, “pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip,” Nano Lett. 6(3), 543547 (2006).
http://dx.doi.org/10.1021/nl052372h
142.
142. G. Yossifon, Y.-C. Chang, and H.-C. Chang, “Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization,” Phys. Rev. Lett. 103(15), 154502 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.154502
143.
143. V. R. Mokkapati, V. Di Virgilio, C. Shen, J. Mollinger, J. Bastemeijer, and A. Bossche, “DNA tracking within a nanochannel: Device fabrication and experiments,” Lab Chip 11(16), 27112719 (2011).
http://dx.doi.org/10.1039/c1lc20075e
144.
144. H. T. Hoang, I. M. Segers-Nolten, N. R. Tas, J. W. van Honschoten, V. Subramaniam, and M. C. Elwenspoek, “Analysis of single quantum-dot mobility inside 1D nanochannel devices,” Nanotechnology 22(27), 275201 (2011).
http://dx.doi.org/10.1088/0957-4484/22/27/275201
145.
145. K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Perot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345350 (2007).
http://dx.doi.org/10.1021/nl062447x
146.
146. M. Krishnan, I. Monch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett. 7(5), 12701275 (2007).
http://dx.doi.org/10.1021/nl0701861
147.
147. F. Persson, L. H. Thamdrup, M. B. L. Mikkelsen, S. E. Jaarlgard, P. Skafte-Pedersen, H. Bruus, A. Kristensen, “Double thermal oxidation scheme for the fabrication of SiO2 nanochannels,” Nanotechnology 18(24), 245301 (2007).
http://dx.doi.org/10.1088/0957-4484/18/24/245301
148.
148. A. Grattoni, E. De Rosa, S. Ferrati, Z. Wang, A. Gianesini, X. Liu, F. Hussain, R. Goodall, and M. Ferrari, “Analysis of a nanochanneled membrane structure through convective gas flow,” J. Micromech. Microeng. 19(11), 115018 (2009).
http://dx.doi.org/10.1088/0960-1317/19/11/115018
149.
149. C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate,” J. Micromech. Microeng. 17(12), 23932397 (2007).
http://dx.doi.org/10.1088/0960-1317/17/12/001
150.
150. D. Fine, A. Grattoni, S. Hosali, A. Ziemys, E. De Rosa, J. Gill, R. Medema, L. Hudson, M. Kojic, M. Milosevic, L. Brousseau Iii, R. Goodall, M. Ferrari, and X. Liu, “A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery,” Lab Chip 10(22), 30743083 (2010).
http://dx.doi.org/10.1039/c0lc00013b
151.
151. D. Fine, A. Grattoni, E. Zabre, F. Hussein, M. Ferrari, and X. Liu, “A low-voltage electrokinetic nanochannel drug delivery system,” Lab Chip 11(15), 25262534 (2011).
http://dx.doi.org/10.1039/c1lc00001b
152.
152. P. M. Sinha, G. Valco, S. Sharma, X. Liu, and M. Ferrari, “Nanoengineered device for drug delivery application,” Nanotechnology 15(10), S585S589 (2004).
http://dx.doi.org/10.1088/0957-4484/15/10/015
153.
153. C. R. Song and P. S. Wang, “Fabrication of sub-10 nm planar nanofluidic channels through native oxide etch and anodic wafer bonding,” IEEE Trans. Nanotechnol. 9(2), 138141 (2010).
http://dx.doi.org/10.1109/TNANO.2009.2038377
154.
154. W. P. Shih, C. Y. Hui, and N. C. Tien, “Collapse of microchannels during anodic bonding: Theory and experiments,” J. Appl. Phys. 95(5), 28002808 (2004).
http://dx.doi.org/10.1063/1.1644898
155.
155. J. Haneveld, N. R. Tas, N. Brunets, H. V. Jansen, and M. Elwenspoek, “Capillary filling of sub-10 nm nanochannels,” J. Appl. Phys. 104(1), 014309 (2008).
http://dx.doi.org/10.1063/1.2952053
156.
156. H. Y. Wang, R. S. Foote, S. C. Jacobson, J. H. Schneibel, and J. M. Ramsey, “Low temperature bonding for microfabrication of chemical analysis devices,” Sens. Actuators B 45(3), 199207 (1997).
http://dx.doi.org/10.1016/S0925-4005(97)00294-3
157.
157. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 10661069 (2007).
http://dx.doi.org/10.1038/nature05741
158.
158. J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10(7), 25372542 (2010).
http://dx.doi.org/10.1021/nl101107u
159.
159. F. Devreux, P. Barboux, M. Filoche, and B. Sapoval, “A simplified model for glass dissolution in water,” J. Mater. Sci. 36(6), 13311341 (2001).
http://dx.doi.org/10.1023/A:1017591100985
160.
160. B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and H. G. Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” J. Vac. Sci. Technol. B 20(6), 24592465 (2002).
http://dx.doi.org/10.1116/1.1526356
161.
161. C. C. Wong, A. Agarwal, N. Balasubramanian, and D. L. Kwong, “Fabrication of self-sealed circular nano/microfluidic channels in glass substrates,” Nanotechnology 18(13), 135304 (2007).
http://dx.doi.org/10.1088/0957-4484/18/13/135304
162.
162. L. Ji, J. K. Kim, Q. Ji, K. N. Leung, Y. Chen, and R. A. Gough, “Conformal metal thin-film coatings in high-aspect-ratio trenches using a self-sputtered rf-driven plasma source,” J. Vac. Sci. Technol. B 25(4), 12271230 (2007).
http://dx.doi.org/10.1116/1.2749527
163.
163. P. Mao and J. Han, “Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes,” Lab Chip 9(4), 586591 (2009).
http://dx.doi.org/10.1039/b809370a
164.
164. J. C. Love, K. E. Paul, and G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13(8), 604607 (2001).
http://dx.doi.org/10.1002/1521-4095(200104)13:8<604::AID-ADMA604>3.0.CO;2-J
165.
165. L. Q. Chen, M. B. Chan-Park, Y. H. Yan, Q. Zhang, C. M. Li, and J. Zhang, “High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask,” Nanotechnology 18(35), 355307 (2007).
http://dx.doi.org/10.1088/0957-4484/18/35/355307
166.
166. L. Q. Chen, M. B. Chan-Park, C. Yang, and Q. Zhang, “The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area,” Nanotechnology 19(15), 155301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/15/155301
167.
167. Q. Xie, Q. Zhou, F. Xie, J. Sang, W. Wang, H. A. Zhang, W. Wu, and Z. Li, “Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique,” Biomicrofluidics 6(1), 016502 (2012).
http://dx.doi.org/10.1063/1.3683164
168.
168. H. Y. Mao, W. G. Wu, Y. L. Zhang, G. Zhai, and J. Xu, “Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology,” J. Micromech. Microeng. 20(8), 085029 (2010).
http://dx.doi.org/10.1088/0960-1317/20/8/085029
169.
169. R. A. Smith, K. Goldman, W. H. Fissell, A. J. Fleischman, C. A. Zorman, and S. Roy, “Removal of endotoxin from deionized water using micromachined silicon nanopore membranes,” J. Micromech. Microeng. 21(5), 054029 (2011).
http://dx.doi.org/10.1088/0960-1317/21/5/054029
170.
170. C. Lee, E. H. Yang, N. V. Myung, and T. George, “A nanochannel fabrication technique without nanolithography,” Nano Lett. 3(10), 13391340 (2003).
http://dx.doi.org/10.1021/nl034399b
171.
171. N. R. Tas, J. W. Berenschot, P. Mela, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “2D-confined nanochannels fabricated by conventional micromachining,” Nano Lett. 2(9), 10311032 (2002).
http://dx.doi.org/10.1021/nl025693r
172.
172. K. Tybrandt, R. Forchheimer, and M. Berggren, “Logic gates based on ion transistors,” Nat. Commun. 3, 871 (2012).
http://dx.doi.org/10.1038/ncomms1869
173.
173. E. O. Gabrielsson, K. Tybrandt, and M. Berggren, “Ion diode logics for pH control,” Lab Chip 12(14), 25072513 (2012).
http://dx.doi.org/10.1039/c2lc40093f
174.
174. H. Kim, J. Kim, E. G. Kim, A. J. Heinz, S. Kwon, and H. Chun, “Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration,” Biomicrofluidics 4(4), 043014 (2010).
http://dx.doi.org/10.1063/1.3516037
175.
175. P. Kim, S. J. Kim, J. Han, and K. Y. Suh, “Stabilization of ion concentration polarization using a heterogeneous nanoporous junction,” Nano Lett. 10(1), 1623 (2010).
http://dx.doi.org/10.1021/nl9023319
176.
176. L. J. Cheng and H. C. Chang, “Microscale pH regulation by splitting water,” Biomicrofluidics 5(4), 046502 (2011).
http://dx.doi.org/10.1063/1.3657928
177.
177. Y. A. Song, R. Melik, A. N. Rabie, A. M. S. Ibrahim, D. Moses, A. Tan, J. Han, and S. J. Lin, “Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes,” Nature Mater. 10, 980986 (2011).
http://dx.doi.org/10.1038/nmat3146
178.
178. X. Liu, C. Suo, Y. Zhang, X. Wang, C. Sun, L. Li, and L. Zhang, “Novel modification of Nafion®117 for a MEMS-based micro direct methanol fuel cell (μDMFC),” J. Micromech. Microeng. 16(9), S226S232 (2006).
http://dx.doi.org/10.1088/0960-1317/16/9/S09
179.
179. S. J. Kim and J. Han, “Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications,” Anal. Chem. 80(9), 35073511 (2008).
http://dx.doi.org/10.1021/ac800157q
180.
180. J. H. Lee, Y. A. Song, and J. Han, “Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane,” Lab Chip 8(4), 596601 (2008).
http://dx.doi.org/10.1039/b717900f
181.
181. R. Kwak, S. J. Kim, and J. Han, “Continuous-flow biomolecule and cell concentrator by ion concentration polarization,” Anal. Chem. 83(19), 73487355 (2011).
http://dx.doi.org/10.1021/ac2012619
182.
182. J. H. Lee and J. Han, “Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator,” Microfluid. Nanofluid. 9(4), 973979 (2010).
http://dx.doi.org/10.1007/s10404-010-0598-z
183.
183. S. H. Ko, S. J. Kim, L. F. Cheow, L. D. Li, K. H. Kang, and J. Han, “Massively parallel concentration device for multiplexed immunoassays,” Lab Chip 11(7), 13511358 (2011).
http://dx.doi.org/10.1039/c0lc00349b
184.
184. A. Sarkar and J. Han, “Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator,” Lab Chip 11(15), 25692576 (2011).
http://dx.doi.org/10.1039/c0lc00588f
185.
185. L. F. Cheow and J. Han, “Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration,” Anal. Chem. 83(18), 70867093 (2011).
http://dx.doi.org/10.1021/ac201307d
186.
186. O. Jännig and N.-T. Nguyen, “A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane,” Microfluid. Nanofluid. 10(3), 513519 (2010).
http://dx.doi.org/10.1007/s10404-010-0685-1
187.
187. S. P. Adiga, C. Jin, L. A. Curtiss, N. A. Monteiro-Riviere, and R. J. Narayan, “Nanoporous membranes for medical and biological applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(5), 568581 (2009).
http://dx.doi.org/10.1002/wnan.50
188.
188. S. K. Vajandar, D. Xu, D. A. Markov, J. P. Wikswo, W. Hofmeister, and D. Li, “SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping,” Nanotechnology 18(27), 275705 (2007).
http://dx.doi.org/10.1088/0957-4484/18/27/275705
189.
189. M. Ali, P. Ramirez, S. Mafe, R. Neumann, and W. Ensinger, “A pH-tunable nanofluidic diode with a broad range of rectifying properties,” ACS Nano 3(3), 603608 (2009).
http://dx.doi.org/10.1021/nn900039f
190.
190. H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville, and P. Ryser, “Size-selective diffusion in nanoporous but flexible membranes for glucose sensors,” ACS Nano 3(4), 924932 (2009).
http://dx.doi.org/10.1021/nn8008728
191.
191. F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum OxideChem. Mater. 10(9), 24702480 (1998).
http://dx.doi.org/10.1021/cm980163a
192.
192. S. D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, and M. J. Sailor, “A label-free porous alumina interferometric immunosensor,” ACS Nano 3(10), 33013307 (2009).
http://dx.doi.org/10.1021/nn900825q
193.
193. X. Wang and S. Smirnov, “Label-free DNA sensor based on surface charge modulated ionic conductance,” ACS Nano 3(4), 10041010 (2009).
http://dx.doi.org/10.1021/nn900113x
194.
194. S. J. Li, J. Li, K. Wang, C. Wang, J. J. Xu, H. Y. Chen, X. H. Xia, and Q. Huo, “A nanochannel array-based electrochemical device for quantitative label-free DNA analysis,” ACS Nano 4(11), 64176424 (2010).
http://dx.doi.org/10.1021/nn101050r
195.
195. S. Lee, M. Park, H. S. Park, Y. Kim, S. Cho, J. H. Cho, J. Park, and W. Hwang, “A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter,” Lab Chip 11(6), 10491053 (2011).
http://dx.doi.org/10.1039/c0lc00499e
196.
196. J. Y. Miao, Z. L. Xu, X. Y. Zhang, N. Wang, Z. Y. Yang, and P. Sheng, “Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes,” Adv. Mater. 19(23), 42344237 (2007).
http://dx.doi.org/10.1002/adma.200700767
197.
197. Y.-F. Chen, M.-C. Li, Y.-H. Hu, W.-J. Chang, and C.-C. Wang, “Low-voltage electroosmotic pumping using porous anodic alumina membranes,” Microfluid. Nanofluid. 5(2), 235244 (2007).
http://dx.doi.org/10.1007/s10404-007-0242-8
198.
198. S. Biring, K. T. Tsai, U. K. Sur, and Y. L. Wang, “High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication,” Nanotechnology 19(35), 355302 (2008).
http://dx.doi.org/10.1088/0957-4484/19/35/355302
199.
199. S. Shin, B. S. Kim, J. Song, H. Lee, and H. H. Cho, “A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current,” Lab Chip 12(14), 25682574 (2012).
http://dx.doi.org/10.1039/c2lc40112f
200.
200. T. Xu, G. Zangari, and R. M. Metzger, “Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina,” Nano Lett. 2(1), 3741 (2002).
http://dx.doi.org/10.1021/nl010075g
201.
201. E. Moyen, L. Santinacci, L. Masson, W. Wulfhekel, and M. Hanbucken, “A novel self-ordered sub-10 nm nanopore template for nanotechnology,” Adv. Mater. 24(7), 50945098 (2012).
http://dx.doi.org/10.1002/adma.201200648
202.
202. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, and H. Masuda, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” J. Vac. Sci. Technol. B 19(2), 569572 (2001).
http://dx.doi.org/10.1116/1.1347039
203.
203. C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78(1), 120122 (2001).
http://dx.doi.org/10.1063/1.1335543
204.
204. C. Y. Peng, C. Y. Liu, N. W. Liu, H. H. Wang, A. Datta, and Y. L. Wang, “Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-beam patterned aluminum,” J. Vac. Sci. Technol. B 23(2), 559562 (2005).
http://dx.doi.org/10.1116/1.1884123
205.
205. N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays,” Appl. Phys. Lett. 82(8), 12811283 (2003).
http://dx.doi.org/10.1063/1.1555689
206.
206. N. W. Liu, A. Datta, C. Y. Liu, C. Y. Peng, H. H. Wang, and Y. L. Wang, “Fabrication of anodic-alumina films with custom-designed arrays of nanochannels,” Adv. Mater. 17(2), 222225 (2005).
http://dx.doi.org/10.1002/adma.200400380
207.
207. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused−ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 25472551 (2008).
http://dx.doi.org/10.1002/adma.200702604
208.
208. P. Y. Apel, “Track etching technique in membrane technology,” Radiat. Meas. 34, 559566 (2001).
http://dx.doi.org/10.1016/S1350-4487(01)00228-1
209.
209. M. Ali, Ph.D. dissertation, der Technischen Universitat Darmstadt, 2009.
210.
210. L. Wen and L. Jiang, “Bio-inspired smart gating nanochannels based on polymer films,” Sci. China Chem. 54(10), 15371546 (2011).
http://dx.doi.org/10.1007/s11426-011-4324-9
211.
211. P. Y. Apel and S. N. Dmitriev, “Micro- and nanoporous materials produced using accelerated heavy ion beams,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 013002 (2011).
http://dx.doi.org/10.1088/2043-6262/2/1/013002
212.
212. P. Y. Apel, Y. E. Korchev, Z. S. Siwy, R. Spohr, and M. Yoshida, “Diode-like single-ion track membrane prepared by electro-stopping,” Nucl. Instrum. Methods Phys. Res. B 184(3), 337346 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00722-4
213.
213. P. Y. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, A. Presz, and B. A. Sartowska, “Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles,” Nanotechnology 18(30), 305302 (2007).
http://dx.doi.org/10.1088/0957-4484/18/30/305302
214.
214. P. Y. Apel, I. V. Blonskaya, O. L. Orelovitch, B. A. Sartowska, and R. Spohr, “Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements,” Nanotechnology 23(22), 225503 (2012).
http://dx.doi.org/10.1088/0957-4484/23/22/225503
215.
215. S. F. Yu, S. B. Lee, M. Kang, and C. R. Martin, “Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes,” Nano Lett. 1(9), 495498 (2001).
http://dx.doi.org/10.1021/nl010044l
216.
216. E. N. Gatimu, T. L. King, J. V. Sweedler, and P. W. Bohn, “Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes,” Biomicrofluidics 1(2), 021502 (2007).
http://dx.doi.org/10.1063/1.2732208
217.
217. S. A. Miller, K. C. Kelly, and A. T. Timperman, “Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system,” Lab Chip 8(10), 17291732 (2008).
http://dx.doi.org/10.1039/b808179d
218.
218. R. Spohr, C. Zet, B. Eberhard Fischer, H. Kiesewetter, P. Apel, I. Gunko, T. Ohgai, and L. Westerberg, “Controlled fabrication of ion track nanowires and channels,” Nucl. Instrum. Methods Phys. Res. B 268(6), 676686 (2010).
http://dx.doi.org/10.1016/j.nimb.2009.12.017
219.
219. Q. Yu and Z. Silber-Li, “Measurements of the ion-depletion zone evolution in a micro/nano-channel,” Microfluid. Nanofluid. 11(5), 623631 (2011).
http://dx.doi.org/10.1007/s10404-011-0828-z
220.
220. I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7 (3), 552556 (2007).
http://dx.doi.org/10.1021/nl062924b
221.
221. J. Xue, Y. Xie, Y. Yan, J. Ke, and Y. Wang, “Surface charge density of the track-etched nanopores in polyethylene terephthalate foils,” Biomicrofluidics 3(2), 022408 (2009).
http://dx.doi.org/10.1063/1.3130988
222.
222. M. Davenport, A. Rodriguez, K. J. Shea, and Z. S. Siwy, “Squeezing ionic liquids through nanopores,” Nano Lett. 9(5), 21252128 (2009).
http://dx.doi.org/10.1021/nl900630z
223.
223. I. Vlassiouk, T. R. Kozel, and Z. S. Siwy, “Biosensing with nanofluidic diodes,” J. Am. Chem. Soc. 131(23), 82118220 (2009).
http://dx.doi.org/10.1021/ja901120f
224.
224. Z. Guo, J. Wang, and E. Wang, “Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel,” Talanta 89, 253257 (2012).
http://dx.doi.org/10.1016/j.talanta.2011.12.022
225.
225. A. Mara, Z. S. Siwy, C. Trautmann, J. Wan, and F. Kamme, “An asymmetric polymer nanopore for single molecule detection,” Nano Lett. 4 (3), 497501 (2004).
http://dx.doi.org/10.1021/nl035141o
226.
226. Q. H. Nguyen, M. Ali, V. Bayer, R. Neumann, and W. Ensinger, “Charge-selective transport of organic and protein analytes through synthetic nanochannels,” Nanotechnology 21(36), 365701 (2010).
http://dx.doi.org/10.1088/0957-4484/21/36/365701
227.
227. X. Hou, W. Guo, F. Xia, F. Q. Nie, H. Dong, Y. Tian, L. Wen, L. Wang, L. Cao, Y. Yang, J. Xue, Y. Song, Y. Wang, D. Liu, and L. Jiang, “A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore,” J. Am. Chem. Soc. 131(22), 78007805 (2009).
http://dx.doi.org/10.1021/ja901574c
228.
228. E. A. Heins, Z. S. Siwy, L. A. Baker, and C. R. Martin, “Detecting single porphyrin molecules in a conically shaped synthetic nanopore,” Nano Lett. 5(9), 18241829 (2005).
http://dx.doi.org/10.1021/nl050925i
229.
229. J. Wang and C. R. Martin, “A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore,” Nanomedicine 3(1), 1320 (2008).
http://dx.doi.org/10.2217/17435889.3.1.13
230.
230. W. Guo, H. Xia, L. Cao, F. Xia, S. Wang, G. Zhang, Y. Song, Y. Wang, L. Jiang, and D. Zhu, “Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes,” Adv. Funct. Mater. 20(20), 35613567 (2010).
http://dx.doi.org/10.1002/adfm.201000989
231.
231. E. A. Jackson and M. A. Hillmyer, “Nanoporous membranes derived from block copolymers: From drug delivery to water filtration,” ACS Nano 4(7), 35483553 (2010).
http://dx.doi.org/10.1021/nn1014006
232.
232. S. Y. Yang, S. Son, S. Jang, H. Kim, G. Jeon, W. J. Kim, and J. K. Kim, “DNA-functionalized nanochannels for SNP detection,” Nano Lett. 11(3), 10321035 (2011).
http://dx.doi.org/10.1021/nl200357y
233.
233. S. Biring, K. T. Tsai, U. K. Sur, and Y. L. Wang, “Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays,” Nanotechnology 19(1), 015304 (2008).
http://dx.doi.org/10.1088/0957-4484/19/01/015304
234.
234. R. W. Mao, S. K. Lin, and C. S. Tsai, “In situ preparation of an ultra-thin nanomask on a silicon wafer,” Nanotechnology 20(2), 025301 (2009).
http://dx.doi.org/10.1088/0957-4484/20/2/025301
235.
235. C. J. Chang, C. S. Yang, Y. J. Chuang, H. S. Khoo, and F. G. Tseng, “Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration,” Nanotechnology 19(36), 365301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/36/365301
236.
236. D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16(16), 13931399 (2004).
http://dx.doi.org/10.1002/adma.200400455
237.
237. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143149 (1997).
http://dx.doi.org/10.1038/386143a0
238.
238. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829832 (1997).
http://dx.doi.org/10.1038/39834
239.
239. O. D. Velev and E. W. Kaler, “Structured porous materials via colloidal crystal templating: From inorganic oxides to metals,” Adv. Mater. 12(7), 531534 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
240.
240. Y. Zeng and D. J. Harrison, “Self assemble colloidal arrays as three dimensional nanofluidic sieves for separation of biomolecules on microchips,” Anal. Chem. 79(6), 22892295 (2007).
http://dx.doi.org/10.1021/ac061931h
241.
241. C.-W. Kuo, J.-Y. Shiu, K. H. Wei, and P. Chen, “Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation,” J. Chromatogr. A 1162(2), 175179 (2007).
http://dx.doi.org/10.1016/j.chroma.2007.06.037
242.
242. Y. Zeng, M. He, and D. J. Harrison, “Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation,” Angew. Chem., Int. Ed. 47(34), 63886391 (2008).
http://dx.doi.org/10.1002/anie.200800816
243.
243. S. H. Yazdi and I. M. White, “A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection,” Biomicrofluidics 6(1), 014105 (2012).
http://dx.doi.org/10.1063/1.3677369
244.
244. Z. Chen, Y. Wang, W. Wang, and Z. Li, “Nanofluidic electrokinetics in nanoparticle crystal,” Appl. Phys. Lett. 95(10), 102105 (2009).
http://dx.doi.org/10.1063/1.3223774
245.
245. J. Chen, P.-C. Huang, and M.-G. Lin, “Analysis and experiment of capillary valves for microfluidics on a rotating disk,” Microfluid. Nanofluid. 4(5), 427437 (2008).
http://dx.doi.org/10.1007/s10404-007-0196-x
246.
246. E. Choi, K. Kwon, S. J. Lee, D. Kim, and J. Park, “In-situ self-assembled colloidal crystals within microchannels using one step stemping for direct seawater desalination by ion concentration polarization,” in Proceedings of the 25th International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 13131315.
247.
247. W. Shen, M. Li, C. Ye, L. Jiang, and Y. Song, “Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection,” Lab Chip 12(17), 30893095 (2012).
http://dx.doi.org/10.1039/c2lc40311k
248.
248. Y. Lei, F. Xie, W. Wang, W. Wu, and Z. Li, “Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor,” Lab Chip 10(18), 23382340 (2010).
http://dx.doi.org/10.1039/c004758a
249.
249. Y. Lei, W. Wang, W. Wu, and Z. Li, “Nanofluidic diode in a suspended nanoparticle crystal,” Appl. Phys. Lett. 96(26), 263102 (2010).
http://dx.doi.org/10.1063/1.3456563
250.
250. M. Zheng, Y. Lei, W. Wang, W. Wu, and Z. Li, “Current rectification in heterogeneous nanoparticle crystals,” in The International Symposium on Microchemistry and Microsystems (ISMM), Seoul, Korea, 2–4 June, 2011.
251.
251. L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluid. 5(6), 727732 (2008).
http://dx.doi.org/10.1007/s10404-008-0314-4
252.
252. D. A. Czaplewski, J. Kameoka, R. Mathers, G. W. Coates, and H. G. Craighead, “Nanofluidic channels with elliptical cross sections formed using a nonlithographic process,” Appl. Phys. Lett. 83(23), 48364838 (2003).
http://dx.doi.org/10.1063/1.1633008
253.
253. K. S. Chu, S. Kim, H. Chung, J. H. Oh, T. Y. Seong, B. H. An, Y. K. Kim, J. H. Park, Y. R. Do, and W. Kim, “Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates,” Nanotechnology 21(42), 425302 (2010).
http://dx.doi.org/10.1088/0957-4484/21/42/425302
254.
254. S. Xu and Y. Zhao, “Monolithic fabrication of nanochannels using core–sheath nanofibers as sacrificial mold,” Microfluid. Nanofluid. 11(3), 359365 (2011).
http://dx.doi.org/10.1007/s10404-011-0801-x
255.
255. W. Gong, J. Xue, Q. Zhuang, X. Wu, and S. Xu, “Fabrication of nanochannels with water-dissolvable nanowires,” Nanotechnology 21(19), 195302 (2010).
http://dx.doi.org/10.1088/0957-4484/21/19/195302
256.
256. U. Vermesh, J. W. Choi, O. Vermesh, R. Fan, J. Nagarah, and J. R. Heath, “Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors,” Nano Lett. 9(4), 13151319 (2009).
http://dx.doi.org/10.1021/nl802931r
257.
257. M. K. Shin, S. K. Kim, H. Lee, S. I. Kim, and S. J. Kim, “The fabrication of polymeric nanochannels by electrospinning,” Nanotechnology 19(19), 195304 (2008).
http://dx.doi.org/10.1088/0957-4484/19/19/195304
258.
258. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, “Aligned multiwalled carbon nanotube membranes,” Science 303(5654), 6265 (2004).
http://dx.doi.org/10.1126/science.1092048
259.
259. N. R. Scruggs, J. W. F. Robertson, J. J. Kasianowicz, and K. B. Migler, “Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes,” Nano Lett. 9(11), 38533859 (2009).
http://dx.doi.org/10.1021/nl9020683
260.
260. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang, “DNA translocation in inorganic nanotubes,” Nano Lett. 5(9), 16331637 (2005).
http://dx.doi.org/10.1021/nl0509677
261.
261. R. Yan, W. Liang, R. Fan, and P. Yang, “Nanofluidic diodes based on nanotube heterojunctions,” Nano Lett. 9(11), 38203825 (2009).
http://dx.doi.org/10.1021/nl9020123
262.
262. H. Liu, J. He, J. Tang, P. Pang, D. Cao, P. Krstic, S. Joseph, S. Lindsay, and C. Nuckolls, “Translocation of single-stranded DNA through single-walled carbon nanotubes,” Science 327(5961), 6467 (2010).
http://dx.doi.org/10.1126/science.1181799
263.
263. P. Pang, J. He, J. H. Park, P. S. Krstic, and S. Lindsay, “Origin of giant ionic currents in carbon nanotube channels,” ACS Nano 5(9), 72777283 (2011).
http://dx.doi.org/10.1021/nn202115s
264.
264. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, “Fabrication of silica nanotube arrays from vertical silicon nanowire templates,” J. Am. Chem. Soc. 125(18), 52545255 (2003).
http://dx.doi.org/10.1021/ja034163+
265.
265. J. Oh, G. Kim, D. Mattia, and H. Noh, “A novel technique for fabrication of micro- and nanofluidic device with embedded single carbon nanotube,” Sens. Actuators B 154(1), 6772 (2011).
http://dx.doi.org/10.1016/j.snb.2009.10.003
266.
266. X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu, “Measurement of the rate of water translocation through carbon nanotubes,” Nano Lett. 11(5), 21732177 (2011).
http://dx.doi.org/10.1021/nl200843g
267.
267. A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, “Nanofluidics in carbon nanotubes,” Nano Today 2(6), 2229 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70170-6
268.
268. J. Goldberger, R. Fan, and P. Yang, “Inorganic nanotubes: A novel platform for nanofluidics,” Acc. Chem. Res. 39(4), 239248 (2006).
http://dx.doi.org/10.1021/ar040274h
269.
269. C. Wang, J. Ouyang, H. L. Gao, H. W. Chen, J. J. Xu, X. H. Xia, and H. Y. Chen, “UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis,” Talanta 85(1), 298303 (2011).
http://dx.doi.org/10.1016/j.talanta.2011.03.057
270.
270. C. Wang, J. Ouyang, D. K. Ye, J. J. Xu, H. Y. Chen, and X. H. Xia, “Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip,” Lab Chip 12(15), 26642671 (2012).
http://dx.doi.org/10.1039/c2lc20977b
271.
271. X. Hu, Q. He, X. Zhang, and H. Chen, “Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding,” Microfluid. Nanofluid. 10(6), 12231232 (2010).
http://dx.doi.org/10.1007/s10404-010-0753-6
272.
272. D. Huh, K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama, “Tuneable elastomeric nanochannels for nanofluidic manipulation,” Nature Mater. 6(6), 424428 (2007).
http://dx.doi.org/10.1038/nmat1907
273.
273. K. L. Mills, D. Huh, S. Takayama, and M. D. Thouless, “Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking,” Lab Chip 10(12), 16271630 (2010).
http://dx.doi.org/10.1039/c000863j
274.
274. B. Y. Xu, J. J. Xu, X. H. Xia, and H. Y. Chen, “Large scale lithography-free nano channel array on polystyrene,” Lab Chip 10(21), 28942901 (2010).
http://dx.doi.org/10.1039/c005245k
275.
275. H. Yu, Y. Lu, Y. G. Zhou, F. B. Wang, F. Y. He, and X. H. Xia, “A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing,” Lab Chip 8(9), 14961501 (2008).
http://dx.doi.org/10.1039/b802778a
276.
276. J.-M. Li, C. Liu, X. Ke, Z. Xu, Y.-J. Duan, M. Li, K.-P. Zhang, and L.-D. Wang, “Microchannel refill: A new method for fabricating 2D nanochannels in polymer substrates,” Lab Chip 12(20), 40594062 (2012).
http://dx.doi.org/10.1039/c2lc40078b
277.
277. G. G. Dougherty, A. A. Pisano, and T. Sands, “Processing and morphology of permeable polycrystalline silicon thin films,” J. Mater. Res. 17(09), 22352242 (2011).
http://dx.doi.org/10.1557/JMR.2002.0329
278.
278. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749753 (2007).
http://dx.doi.org/10.1038/nature05532
279.
279. D. H. Choi, Y. D. Han, B. K. Lee, S. J. Choi, H. C. Yoon, D. S. Lee, and J. B. Yoon, “Use of a columnar metal thin film as a nanosieve with sub-10 nm pores,” Adv. Mater. 22(32), 44084413 (2012).
http://dx.doi.org/10.1002/adma.201200755
280.
280. Z. Y. Wu, C. Y. Li, X. L. Guo, B. Li, D. W. Zhang, Y. Xu, and F. Fang, “Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules,” Lab on a Chip 12(18), 34083412 (2012).
http://dx.doi.org/10.1039/c2lc40571g
281.
281. S. M. Kim, M. A. Burns, and E. F. Hasselbrink, “Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip,” Anal. Chem. 78(14), 47794785 (2006).
http://dx.doi.org/10.1021/ac060031y
282.
282. C. Wang, S. J. Li, Z. Q. Wu, J. J. Xu, H. Y. Chen, and X. H. Xia, “Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device,” Lab Chip 10(5), 639646 (2010).
http://dx.doi.org/10.1039/b915762j
283.
283. S. M. Park, Y. S. Huh, H. G. Craighead, D. Erickson, “A method for nanofluidic device prototyping using elastomeric collapse,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 1554915554 (2009).
http://dx.doi.org/10.1073/pnas.0904004106
284.
284. K.-F. Lo and Y.-J. Juang, “Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation,” Biomicrofluidics 6(2), 026504 (2012).
http://dx.doi.org/10.1063/1.4730371
285.
285. L. J. Steinbock, O. Otto, C. Chimerel, J. Gornall, and U. F. Keyser, “Detecting DNA folding with nanocapillaries,” Nano Lett. 10(7), 24932497 (2010).
http://dx.doi.org/10.1021/nl100997s
286.
286. B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
http://dx.doi.org/10.1063/1.3678030
287.
287. P. Utko, F. Persson, A. Kristensen, and N. B. Larsen, “Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments,” Lab Chip 11(2), 303308 (2011).
http://dx.doi.org/10.1039/c0lc00260g
288.
288. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, “Characterization of individual polynucleotide molecules using a membrane channel,” Proc. Natl. Acad. Sci. U.S.A. 93, 1377013773 (1996).
http://dx.doi.org/10.1073/pnas.93.24.13770
289.
289. L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux, “Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore,” Science 274(5294), 18591866 (1996).
http://dx.doi.org/10.1126/science.274.5294.1859
290.
290. R. F. Purnell and J. J. Schmidt, “Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore,” ACS Nano 3(9), 25332538 (2009).
http://dx.doi.org/10.1021/nn900441x
291.
291. Y. Wang, D. Zheng, Q. Tan, M. X. Wang, and L. Q. Gu, “Nanopore-based detection of circulating microRNAs in lung cancer patients,” Nat. Nanotechnol. 6(10), 668674 (2011).
http://dx.doi.org/10.1038/nnano.2011.147
292.
292. L. Movileanu, S. Howorka, O. Braha, and H. Bayley, “Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore,” Nat. Biotechnol. 18, 10911095 (2000).
http://dx.doi.org/10.1038/80295
293.
293. D. Rotem, L. Jayasinghe, M. Salichou, and H. Bayley, “Protein detection by nanopores equipped with aptamers,” J. Am. Chem. Soc. 134(5), 27812787 (2012).
http://dx.doi.org/10.1021/ja2105653
294.
294. S. Howorka, L. Movileanu, O. Braha, and H. Bayley, “Kinetics of duplex formation for individual DNA strands within a single protein nanopore,” Proc. Natl. Acad. Sci. U.S.A. 98(23), 1299613001 (2001).
http://dx.doi.org/10.1073/pnas.231434698
295.
295. H. Miedema, M. Vrouenraets, J. Wierenga, W. Meijberg, G. Robillard, and B. Eisenberg, “A biological porin engineered into a molecular, nanofluidic diode,” Nano Lett. 7(9), 28862891 (2007).
http://dx.doi.org/10.1021/nl0716808
296.
296. T. Z. Butler, M. Pavlenok, I. M. Derrington, M. Niederweis, and J. H. Gundlach, “Single-molecule DNA detection with an engineered MspA protein nanopore,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 2064720652 (2008).
http://dx.doi.org/10.1073/pnas.0807514106
297.
297. A. Khoutorsky, A. Heyman, O. Shoseyov, and M. E. Spira, “Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1,” Nano Lett. 11(7), 29012904 (2011).
http://dx.doi.org/10.1021/nl201368w
298.
298. H. Bayley and L. Jayasinghe, “Functional engineered channels and pores (Review),” Mol. Membr. Biol. 21(4), 209220 (2004).
http://dx.doi.org/10.1080/09687680410001716853
299.
299. L. J. Cheng and L. J. Guo, “Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices,” ACS Nano 3(3), 575584 (2009.
http://dx.doi.org/10.1021/nn8007542
300.
300. B. Arkles, “Tailoring surfaces with silanes,” CHEMTECH 7, 766778 (1977).
301.
301. P. Mao, Master's thesis, “Fabrication and characterization of nanofluidic channels for studying molecular dynamics in confined environments” (Massachusetts Institute of Technology, 2005).
302.
302. A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, “Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites,” Chem. Mater. 15(16), 31983201 (2003).
http://dx.doi.org/10.1021/cm020975d
303.
303. J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem. 12(7), 19521958 (2002).
http://dx.doi.org/10.1039/b201013p
304.
304. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, “Organic functionalization of carbon nanotubes,” J. Am. Chem. Soc. 124(5), 760761 (2002).
http://dx.doi.org/10.1021/ja016954m
305.
305. N. N. Li, A. G. Fane, W. S. Winston, and T. Matsuura, Advanced Membrane Technology and Applications (John Wiley & Sons, Inc., 2008).
306.
306. G. F. Schneider and C. Dekker, “DNA sequencing with nanopores,” Nat. Biotechnol. 30(4), 326328 (2012).
http://dx.doi.org/10.1038/nbt.2181
307.
307. L. Q. Gu and J. W. Shim, “Single molecule sensing by nanopores and nanopore devices,” Analyst 135, 441451 (2010).
http://dx.doi.org/10.1039/b907735a
308.
308. R. Spohr, “Status of ion track technology—Prospects of single tracks,” Radiat. Meas. 40, 191202 (2005).
http://dx.doi.org/10.1016/j.radmeas.2005.03.008
309.
309. R. Fan, S. Huh, R. Yan, J. Arnold, and P. Yang, “Gated proton transport in aligned mesoporous silica films,” Nature Mater. 7(4), 303307 (2008).
http://dx.doi.org/10.1038/nmat2127
310.
310. Y. C. Wang, A. L. Stevens, and J. Han, “Million-fold preconcentration of proteins and peptides by nanofluidic filter,” Anal. Chem. 77(14), 42934299 (2005).
http://dx.doi.org/10.1021/ac050321z
311.
311. J. Fu, P. Mao, and J. Han, “Nanofilter array chip for fast gel-free biomolecule separation,” Appl. Phys. Lett. 87, 263902 (2005).
http://dx.doi.org/10.1063/1.2149979
312.
312. D. Stein, M. Kruithof, and C. Dekker, “Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel,” Phys. Rev. Lett. 99(4), 044501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.044501
313.
313. J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23(6), 23192329 (2005).
http://dx.doi.org/10.1116/1.2101678
314.
314. E. A. Strychalski, S. M. Stavis, and H. G. Craighead, “Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing,” Nanotechnology 1931, 315301 (2008).
http://dx.doi.org/10.1088/0957-4484/19/31/315301
315.
315. S. Howorka and Z. S. Siwy, “Nanopores as protein sensors,” Nat. Biotechnol. 30(6), 506507 (2012).
http://dx.doi.org/10.1038/nbt.2264
316.
316. B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 28712874 (2006).
http://dx.doi.org/10.1116/1.2357967
317.
317. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink, and D. Maas, “Sub-10-nm nanolithography with a scanning helium beam,” J. Vac. Sci. Technol. B 27(4), L18L20 (2009).
http://dx.doi.org/10.1116/1.3182742
318.
318. F. Xie, Y. Wang, W. Wang, Z. Li, G. Yossifon, and H.-C. Chang, “Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers,” J. Nanosci. Nanotechnol. 10(11), 72777281 (2010).
http://dx.doi.org/10.1166/jnn.2010.2842
319.
319. H. Daiguji, N. Tatsumi, S. Kataoka, and A. Endo, “One-dimensional alignment of SBA-15 films in microtrenches,” Langmuir 25(19), 1122111224 (2009).
http://dx.doi.org/10.1021/la902202s
320.
320. H. Daiguji, D. Nakayama, A. Takahashi, S. Kataoka, and A. Endo, “Ion transport in mesoporous silica thin films,” in Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, 13–17 March 2011.
321.
321. H. Daiguji, J. Hwang, A. Takahashi, S. Kataoka, and A. Endo, “Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures,” Langmuir 28(7), 36713677 (2012).
http://dx.doi.org/10.1021/la204477h
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4794973
Loading
/content/aip/journal/bmf/7/2/10.1063/1.4794973
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/2/10.1063/1.4794973
2013-03-13
2014-07-31

Abstract

Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/2/1.4794973.html;jsessionid=1k0fw9ek3rerx.x-aip-live-06?itemId=/content/aip/journal/bmf/7/2/10.1063/1.4794973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Review article: Fabrication of nanofluidic devices
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4794973
10.1063/1.4794973
SEARCH_EXPAND_ITEM