Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. C. T. Eijkel and A. v. d. Berg, “Nanofluidics: What is it and what can we expect from it?” Microfluid. Nanofluid. 1(3), 249267 (2005).
2. W. Sparreboom, A. van den Berg, and J. C. Eijkel, “Principles and applications of nanofluidic transport,” Nat. Nanotechnol. 4(11), 713720 (2009).
3. N. R. Tas, P. Mela, T. Kramer, J. W. Berenschot, and A. van den Berg, “Capillarity induced negative pressure of water plugs in nanochannels,” Nano Lett. 3(11), 15371540 (2003).
4. C. Duan, R. Karnik, M. C. Lu, and A. Majumdar, “Evaporation-induced cavitation in nanofluidic channels,” Proc. Natl. Acad. Sci. U.S.A. 109(10), 36833693 (2012).
5. R. Karnik, K. Castelino, C. H. Duan, and A. Majumdar, “Diffusion-limited patterning of molecules in nanofluidic channels,” Nano Lett. 6(8), 17351740 (2006).
6. H. C. Chang and G. Yossifon, “Understanding electrokinetics at the nanoscale: A perspective,” Biomicrofluidics 3(1), 012001 (2009).
7. D. Stein, M. Kruithof, and C. Dekker, “Surface-charge-governed ion transport in nanofluidic channels,” Phys. Rev. Lett. 93(3), 035901 (2004).
8. J. O. Tegenfeldt, H. Cao, W. W. Reisner, C. Prinz, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Stretching DNA in nanochannels,” Biophys. J. 86(1), 596A (2004).
9. P. Abgrall and N. T. Nguyen, “Nanofluidic devices and their applications,” Anal. Chem. 80(7), 23262341 (2008).
10. R. Schoch, J. Han, and P. Renaud, “Transport phenomena in nanofluidics,” Rev. Mod. Phys. 80(3), 839883 (2008).
11. D. Xia, J. Yan, and S. Hou, “Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis,” Small 8(18), 27872801 (2012).
12. H. Daiguji, P. Yang, A. J. Szeri, and A. Majumdar, “Electrochemomechanical energy conversion in nanofluidic channels,” Nano Lett. 4(12), 23152321 (2004).
13. D.-K. Kim, C. Duan, Y.-F. Chen, and A. Majumdar, “Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels,” Microfluid. Nanofluid. 9(6), 12151224 (2010).
14. S. Moghaddam, E. Pengwang, Y. B. Jiang, A. R. Garcia, D. J. Burnett, C. J. Brinker, R. I. Masel, and M. A. Shannon, “An inorganic-organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure,” Nat. Nanotechnol. 5(3), 230236 (2010).
15. S. J. Kim, S. H. Ko, K. H. Kang, and J. Han, “Direct seawater desalination by ion concentration polarization,” Nat. Nanotechnol. 5(4), 297301 (2010).
16. J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, “Fast mass transport through sub-2-nanometer carbon nanotubes,” Science 312(5776), 10341037 (2006).
17. M. R. Powell, M. Sullivan, I. Vlassiouk, D. Constantin, O. Sudre, C. C. Martens, R. S. Eisenberg, and Z. S. Siwy, “Nanoprecipitation-assisted ion current oscillations,” Nat. Nanotechnol. 3(1), 5157 (2008).
18. B. D. Gates, Q. Xu, J. C. Love, D. B. Wolfe, and G. M. Whitesides, “Unconventional nanofabrication,” Annu. Rev. Mater. Res. 34(1), 339372 (2004).
19. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev. 105(4), 11711196 (2005).
20. J. L. Perry and S. G. Kandlikar, “Review of fabrication of nanochannels for single phase liquid flow,” Microfluid. Nanofluid. 2(3), 185193 (2005).
21. D. Mijatovic, J. C. Eijkel, and A. van den Berg, “Technologies for nanofluidic systems: Top-down vs. bottom-up–a review,” Lab Chip 5(5), 492500 (2005).
22. C. Dekker, “Solid-state nanopores,” Nat. Nanotechnol. 2(4), 209215 (2007).
23. S. Prakash, A. Piruska, E. N. Gatimu, P. W. Bohn, J. V. Sweedler, and M. A. Shannon, “Nanofluidic: Systems and applications,” IEEE Sens. J. 8(5), 441450 (2008).
24. Y. Chen and A. Pepin, “Nanofabrication: Concentional and nonconventional methods,” Electrophoresis 22, 187207 (2001).<187::AID-ELPS187>3.0.CO;2-0
25. J. M. Perry, K. Zhou, Z. D. Harms, and S. C. Jacobson, “Ion transport in nanofluidic funnels,” ACS Nano 4(7), 38973902 (2010).
26. S. H. Kim, Y. Cui, M. J. Lee, S. W. Nam, D. Oh, S. H. Kang, Y. S. Kim, and S. Park, “Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma,” Lab Chip 11(2), 348353 (2011).
27. R. Yokokawa, Y. Yoshida, S. Takeuchi, T. Kon, and H. Fujita, “Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel,” Nanotechnology 17(1), 289294 (2006).
28. A. Hibara, T. Saito, H. B. Kim, M. Tokeshi, T. Ooi, M. Nakao, and T. Kitamori, “Nanochannels on a fused-silica microchip and liquid properties investigation by time-resolved fluorescence measurements,” Anal. Chem. 74(24), 61706176 (2002).
29. T. Tsukahara, W. Mizutani, K. Mawatari, and T. Kitamori, “NMR studies of structure and dynamics of liquid molecules confined in extended nanospaces,” J. Phys. Chem. B 113(31), 1080810816 (2009).
30. E. Tamaki, A. Hibara, H. B. Kim, M. Tokeshi, and T. Kitamori, “Pressure-driven flow control system for nanofluidic chemical process,” J. Chromatogr. A 1137(2), 256262 (2006).
31. Z. D. Harms, K. B. Mogensen, P. S. Nunes, K. Zhou, B. W. Hildenbrand, I. Mitra, Z. Tan, A. Zlotnick, J. P. Kutter, and S. C. Jacobson, “Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids,” Anal. Chem. 83(24), 95739578 (2011).
32. S. L. Levy, J. T. Mannion, J. Cheng, C. H. Reccius, and H. G. Craighead, “Entropic unfolding of DNA molecules in nanofluidic channels,” Nano Lett. 8(11), 38393844 (2008).
33. R. Riehn, R. H. Austin, and J. C. Sturm, “A nanofluidic railroad switch for DNA,” Nano Lett. 6(9), 19731976 (2006).
34. W. Reisner, J. Beech, N. Larsen, H. Flyvbjerg, A. Kristensen, and J. Tegenfeldt, “Nanoconfinement-enhanced conformational response of single DNA molecules to changes in ionic environment,” Phys. Rev. Lett. 99(5), 058302 (2007).
35. S. W. Nam, M. H. Lee, S. H. Lee, D. J. Lee, S. M. Rossnagel, and K. B. Kim, “Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition,” Nano Lett. 10(9), 33243329 (2010).
36. M. Fouad, M. Yavuz, and B. Cui, “Nanofluidic channels fabricated by e-beam lithography and polymer reflow sealing,” J. Vac. Sci. Technol. B 28(6), C6I11C6I13 (2010).
37. C. K. Tung, R. Riehn, and R. H. Austin, “Complementary metal oxide semiconductor compatible fabrication and characterization of parylene-C covered nanofluidic channels with integrated nanoelectrodes,” Biomicrofluidics 3(3), 031101 (2009).
38. A. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small 1(10), 924939 (2005).
39. A. A. Tseng, “Recent developments in micromilling using focused ion beam technology,” J. Micromech. Microeng. 14(4), R15R34 (2004).
40. P. Chen, J. J. Gu, E. Brandin, Y. R. Kim, Q. Wang, and D. Branton, “Probing single DNA molecule transport using fabricated nanopores,” Nano Lett. 4(11), 22932298 (2004).
41. C. Danelon, C. Santschi, J. Brugger, and H. Vogel, “Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition,” Langmuir 22(25), 1071110715 (2006).
42. V. Mussi, P. Fanzio, L. Repetto, G. Firpo, P. Scaruffi, S. Stigliani, G. P. Tonini, and U. Valbusa, “DNA-functionalized solid state nanopore for biosensing,” Nanotechnology 21(14), 145102 (2010).
43. H. D. Tong, H. V. Jansen, V. J. Gadgil, C. G. Bostan, E. Berenschot, C. J. M. van Rijn, and M. Elwenspoek, “Silicon nitride nanosieve membrane,” Nano Lett. 4(2), 283287 (2004).
44. Z. P. Tian, K. Lu, and B. Chen, “Unique nanopore pattern formation by focused ion beam guided anodization,” Nanotechnology 21(40), 405301 (2010).
45. D. M. Cannon, B. R. Flachsbart, M. A. Shannon, J. V. Sweedler, and P. W. Bohn, “Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates,” Appl. Phys. Lett. 85(7), 12411243 (2004).
46. A. A. Tseng, I. A. Insua, J. S. Park, B. Li, G. P. Vakanas, “Milling of submicron channels on gold layer using double charged arsenic ion beam,” J. Vac. Sci. Technol. B 22(1), 8289 (2004).
47. L. Guan, K. Peng, Y. Yang, X. Qiu, and C. Wang, “The nanofabrication of polydimethylsiloxane using a focused ion beam,” Nanotechnology 20(14), 145301 (2009).
48. L. Frey, C. Lehrer, and H. Ryssel, “Nanoscale effects in focused ion beam processing,” Appl. Phys. A: Mater. Sci. Process. 76(7), 10171023 (2003).
49. H.-W. Li, D.-J. Kang, M. G. Blamire, and W. T. Huck, “Focused ion beam fabrication of silicon print masters,” Nanotechnology 14, 220223 (2003).
50. T. Yamamoto and T. Fujii, “Nanofluidic single-molecule sorting of DNA: A new concept in separation and analysis of biomolecules towards ultimate level performance,” Nanotechnology 21(39), 395502 (2010).
51. L. D. Menard and J. M. Ramsey, “Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling,” Nano Lett. 11(2), 512517 (2011).
52. T. Maleki, S. Mohammadi, and B. Ziaie, “A nanofluidic channel with embedded transverse nanoelectrodes,” Nanotechnology 20(10), 105302 (2009).
53. A. A. Tseng, I. A. Insua, J.-S. Park, and C. D. Chen, “Milling yield estimation in focused ion beam milling of two-layer substrates,” J. Micromech. Microeng. 15(1), 2028 (2005).
54. E. Angeli, C. Manneschi, L. Repetto, G. Firpo, and U. Valbusa, “DNA manipulation with elastomeric nanostructures fabricated by soft-moulding of a FIB-patterned stamp,” Lab Chip 11(15), 26252629 (2011).
55. P. Fanzio, V. Mussi, C. Manneschi, E. Angeli, G. Firpo, L. Repetto, and U. Valbusa, “DNA detection with a polymeric nanochannel device,” Lab Chip 11(17), 29612966 (2011).
56. J. Wu, R. Chantiwas, A. Amirsadeghi, S. A. Soper, and S. Park, “Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps,” Lab Chip 11(17), 29842989 (2011).
57. L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater. 19(4), 495513 (2007).
58. X. Li, X. Wang, J. Jin, Q. Tang, Y. Tian, S. Fu, and Z. Cui, “Fabrication of micro/nano fluidic system combining hybrid mask-mould lithography with thermal bonding,” Microelectron. Eng. 87(5–8), 722725 (2010).
59. B. Yang, V. R. Dukkipati, D. Li, B. L. Cardozo, S. W. Pang, “Stretching and selective immobilization of DNA in SU-8 micro- and nanochannels,” J. Vac. Sci. Technol. B 25(6), 23522356 (2007).
60. L. H. Thamdrup, A. Klukowska, and A. Kristensen, “Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA,” Nanotechnology 19(12), 125301 (2008).
61. Y. H. Cho, J. Park, H. Park, X. Cheng, B. J. Kim, and A. Han, “Fabrication of high-aspect-ratio polymer nanochannels using a novel Si nanoimprint mold and solvent-assisted sealing,” Microfluid. Nanofluid. 9(2–3), 163170 (2009).
62. Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, “Sub-10 nm self-enclosed self-limited nanofluidic channel arrays,” Nano Lett. 8(11), 38303833 (2008).
63. L. J. Guo, X. Cheng, and C. F. Chou, “Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching,” Nano Lett. 4(1)6973 (2004).
64. R. Chantiwas, M. L. Hupert, S. R. Pullagurla, S. Balamurugan, J. Tamarit-Lopez, S. Park, P. Datta, J. Goettert, Y. K. Cho, and S. A. Soper, “Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits,” Lab Chip 10(23), 32553264 (2010).
65. M. B. Mikkelsen, A. A. Letailleur, E. Sondergard, E. Barthel, J. Teisseire, R. Marie, and A. Kristensen, “All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp,” Lab Chip 12(2), 262267 (2012).
66. N. R. Hendricks, J. J. Watkins, and K. R. Carter, “Formation of hierarchical silica nanochannels through nanoimprint lithography.J. Mater. Chem. 21(37), 1421314218 (2011).
67. R. M. Reano and S. W. Pang, “Sealed three-dimensional nanochannels,” J. Vac. Sci. Technol. B 23(6), 29952999 (2005).
68. X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 14721476 (2008).
69. D. Xia, Z. Ku, S. C. Lee, and S. R. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147179 (2011).
70. Y. J. Oh, T. C. Gamble, D. Leonhardt, C. H. Chung, S. R. Brueck, C. F. Ivory, G. P. Lopez, D. N. Petsev, and S. M. Han, “Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide,” Lab Chip 8(2), 251258 (2008).
71. Y. J. Oh, D. Bottenus, C. F. Ivory, and S. M. Han, “Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels,” Lab Chip 9(11), 16091617 (2009).
72. M. J. O'Brien, P. Bisong, L. K. Ista, E. M. Rabinovich, A. L. Garcia, S. S. Sibbett, G. P. Lopez, and S. R. J. Brueck, “Fabrication of an integrated nanofluidic chip using interferometric lithography,” J. Vac. Sci. Technol. B 21(6), 29412945 (2003).
73. D. Bottenus, Y. J. Oh, S. M. Han, and C. F. Ivory, “Experimentally and theoretically observed native pH shifts in a nanochannel array,” Lab Chip 9(2), 219231 (2009).
74. A. L. Garcia, L. K. Ista, D. N. Petsev, M. J. O'Brien, P. Bisong, A. A. Mammoli, S. R. Brueck, and G. P. Lopez, “Electrokinetic molecular separation in nanoscale fluidic channels,” Lab Chip 5(11), 12711276 (2005).
75. Y. J. Oh, A. L. Garcia, D. N. Petsev, G. P. Lopez, S. R. Brueck, C. F. Ivory, and S. M. Han, “Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control,” Lab Chip 9(11), 16011608 (2009).
76. Y. Zhang, T. C. Gamble, A. Neumann, G. P. Lopez, S. R. Brueck, and D. N. Petsev, “Electric field control and analyte transport in Si/SiO2 fluidic nanochannels,” Lab Chip 8(10), 16711675 (2008).
77. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, J. J. dePablo, K. Jo, and D. C. Schwartz, “Nanochannel confinement: DNA stretch approaching full contour length,” Lab Chip 11(10), 17211729 (2011).
78. N. M. Elman, K. Daniel, F. Jalali-Yazdi, and M. J. Cima, “Super permeable nano-channel membranes defined with laser interferometric lithography,” Microfluid. Nanofluid. 8(4), 557563 (2009).
79. H. M. Chen, L. Pang, M. S. Gordon, and Y. Fainman, “Real-time template-assisted manipulation of nanoparticles in a multilayer nanofluidic chip,” Small 7(19), 27502757 (2011).
80. G. Zhang and D. Wang, “Colloidal lithography–The art of nanochemical patterning,” Chem. Asian J. 4(2), 236245 (2009).
81. Y. Li, W. Cai, and G. Duan, “Ordered micro/nanostructured arrays based on the monolayer colloidal crystals,” Chem. Mater. 20(3), 615624 (2008).
82. N. Vogel, C. K. Weiss, and K. Landfester, “From soft to hard: The generation of functional and complex colloidal monolayers for nanolithography,” Soft Matter 8(15), 4044 (2012).
83. A. V. Whitney, B. D. Myers, and R. P. Van Duyne, “Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography,” Nano Lett. 4(8), 15071511 (2004).
84. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(12), 31833190 (1992).
85. J. Huang, F. Kim, A. R. Tao, S. Connor, and P. Yang, “Spontaneous formation of nanoparticle stripe patterns through dewetting,” Nature Mater. 4(12), 896900 (2005).
86. C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
87. S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10(8), 29892994 (2010).
88. Z. X. Lu, A. Namboodiri, and M. M. Collinson, “Self-supporting nanopore membranes with controlled pore size and shape,” ACS Nano 2(5), 993999 (2008).
89. M. B. Stern, M. W. Geis, and J. E. Curtin, “Nanochannel fabrication for chemical sensors,” J. Vac. Sci. Technol. B 15(6), 28872891 (1997).
90. R. Karnik, R. Fan, M. Yue, D. Li, P. Yang, and A. Majumdar, “Electrostatic control of ions and molecules in nanofluidic transistors,” Nano Lett. 5(5), 943948 (2005).
91. R. Karnik, K. Castelino, R. Fan, P. Yang, and A. Majumdar, “Effects of biological reactions and modifications on conductance of nanofluidic channels,” Nano Lett. 5(9), 16381642 (2005).
92. R. Karnik, K. Castelino, and A. Majumdar, “Field-effect control of protein transport in a nanofluidic transistor circuit,” Appl. Phys. Lett. 88(12), 123114 (2006).
93. R. Karnik, C. Duan, K. Castelino, H. Daiguji, and A. Majumdar, “Rectification of ionic current in a nanofluidic diode,” Nano Lett. 7(3), 547551 (2007).
94. L. J. Cheng and L. J. Guo, “Rectified ion transport through concentration gradient in homogeneous silica nanochannels,” Nano Lett. 7(10), 31653171 (2007).
95. R. A. Barton, B. Ilic, S. S. Verbridge, B. R. Cipriany, J. M. Parpia, and H. G. Craighead, “Fabrication of a nanomechanical mass sensor containing a nanofluidic channel,” Nano Lett. 10(6), 20582063 (2010).
96. T. S. Hug, N. F. de Rooij, and U. Staufer, “Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels,” Microfluid. Nanofluid. 2(2), 117124 (2006).
97. C. Shen, V. R. S. S. Mokkapati, H. T. M. Pham, and P. M. Sarro, “Micromachined nanofiltration modules for lab-on-a-chip applications,” J. Micromech. Microeng. 22(2), 025003 (2012).
98. J. C. Eijkel, J. Bomer, N. R. Tas, and A. van den Berg, “1-D nanochannels fabricated in polyimide,” Lab Chip 4(3), 161163 (2004).
99. M. N. Hamblin, A. R. Hawkins, D. Murray, D. Maynes, M. L. Lee, A. T. Woolley, and H. D. Tolley, “Capillary flow in sacrificially etched nanochannels,” Biomicrofluidics 5(2), 021103 (2011).
100. K. P. Nichols, J. C. Eijkel, and H. J. Gardeniers, “Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels,” Lab Chip 8(1), 173175 (2008).
101. M. A. Zevenbergen, P. S. Singh, E. D. Goluch, B. L. Wolfrum, and S. G. Lemay, “Stochastic sensing of single molecules in a nanofluidic electrochemical device,” Nano Lett. 11(7), 28812886 (2011).
102. M. N. Hamblin, J. Xuan, D. Maynes, H. D. Tolley, D. M. Belnap, A. T. Woolley, M. L. Lee, and A. R. Hawkins, “Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels,” Lab Chip 10(2), 173178 (2010).
103. W. Sparreboom, J. C. Eijkel, J. Bomer, and A. van den Berg, “Rapid sacrificial layer etching for the fabrication of nanochannels with integrated metal electrodes,” Lab Chip 8(3), 402407 (2008).
104. R. Sordan, A. Miranda, F. Traversi, D. Colombo, D. Chrastina, G. Isella, M. Masserini, L. Miglio, K. Kern, and K. Balasubramanian, “Vertical arrays of nanofluidic channels fabricated without nanolithography,” Lab Chip 9(11), 15561560 (2009).
105. H. Zeng, Z. Wan, and A. D. Feinerman, “Fabrication of micro/nano fluidic channels with sacrificial galvanic coupled metals,” Nanotechnology 17(13), 31833188 (2006).
106. C. Peng and S. W. Pang, “Three-dimensional nanochannels formed by fast etching of polymer,” J. Vac. Sci. Technol. B 24(4), 19411946 (2006).
107. S. Wang, X. Hu, and L. J. Lee, “Electrokinetics induced asymmetric transport in polymeric nanonozzles,” Lab Chip 8(4), 573581 (2008).
108. L. M. Bellan, E. A. Strychalski, and H. G. Craighead, “Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers,” J. Vac. Sci. Technol. B 26(5), 17281731 (2008).
109. S. Lee, K. Limkrailassiri, Y. Gao, C. Chang, and L. W. Lin, “Chip-to-chip fluidic connectors via near-field electrospinning,” in Proceedings of IEEE MicroElectroMechanical Systems (IEEE, 2007), pp. 252255.
110. J. Guan, P. E. Boukany, O. Hemminger, N. R. Chiou, W. Zha, M. Cavanaugh, and L. J. Lee, “Large laterally ordered nanochannel arrays from DNA combing and imprinting,” Adv. Mater. 22(36), 39974001 (2010).
111. P. E. Boukany, A. Morss, W. C. Liao, B. Henslee, H. Jung, X. Zhang, B. Yu, X. Wang, Y. Wu, L. Li, K. Gao, X. Hu, X. Zhao, O. Hemminger, W. Lu, G. P. Lafyatis, and L. J. Lee, “Nanochannel electroporation delivers precise amounts of biomolecules into living cells,” Nat. Nanotechnol. 6(11), 747754 (2011).
112. N. R. Devlin and D. K. Brown, “Fabricating millimeter to nanometer sized cavities concurrently for nanofluidic devices,” J. Vac. Sci. Technol. B 28(6), C6I7C6I10 (2010).
113. N. R. Devlin, D. K. Brown, and P. A. Kohl, “Patterning decomposable polynorbornene with electron beam lithography to create nanochannels,” J. Vac. Sci. Technol. B 27(6), 25082511 (2009).
114. C. K. Harnett, G. W. Coates, and H. G. Craighead, “Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics,” J. Vac. Sci. Technol. B 19(6), 28422845 (2001).
115. X. T. Huang, C. Gupta, and S. Pennathur, “A novel fabrication method for centimeter-long surface-micromachined nanochannels,” J. Micromech. Microeng. 20(1), 015040 (2010).
116. H. T. Hoang, H. D. Tong, I. M. Segers-Nolten, N. R. Tas, V. Subramaniam, and M. C. Elwenspoek, “Wafer-scale thin encapsulated two-dimensional nanochannels and its application toward visualization of single molecules,” J. Colloid Interface Sci. 367(1), 455459 (2012).
117. A. Grattoni, D. Fine, E. Zabre, A. Ziemys, J. Gill, Y. Mackeyev, M. A. Cheney, D. C. Danila, S. Hosali, L. J. Wilson, F. Hussain, and M. Ferrari, “Gated and near-surface diffusion of charged fullerenes in nanochannels,” ACS Nano 5(12), 93829391 (2011).
118. H. T. Hoang, I. M. Segers-Nolten, J. W. Berenschot, M. J. de Boer, N. R. Tas, J. Haneveld, and M. C. Elwenspoek, “Fabrication and interfacing of nanochannel devices for single-molecule studies,” J. Micromech. Microeng. 19(6), 065017 (2009).
119. J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, “Wet anisotropic etching for fluidic 1D nanochannels,” J. Micromech. Microeng. 13(4), S62S66 (2003).
120. M. Wang, N. Jing, I. H. Chou, G. L. Cote, and J. Kameoka, “An optofluidic device for surface enhanced Raman spectroscopy,” Lab Chip 7(5), 630632 (2007).
121. Y. C. Wang and J. Han, “Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator,” Lab Chip 8(3), 392394 (2008).
122. R. B. Veenhuis, E. J. van der Wouden, J. W. van Nieuwkasteele, A. van den Berg, and J. C. Eijkel, “Field-effect based attomole titrations in nanoconfinement,” Lab Chip 9(24), 34723480 (2009).
123. D. Kim, A. Raj, L. Zhu, R. I. Masel, and M. A. Shannon, “Non-equilibrium electrokinetic micro/nano fluidic mixer,” Lab Chip 8(4), 625628 (2008).
124. S. J. Lee and D. Kim, “Millisecond-order rapid micromixing with non-equilibrium electrokinetic phenomena,” Microfluid. Nanofluid. 12, 897906 (2011).
125. C. Duan and A. Majumdar, “Anomalous ion transport in 2-nm hydrophilic nanochannels,” Nat. Nanotechnol. 5(12), 848852 (2010).
126. P. Abgrall, L. N. Low, and N. T. Nguyen, “Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding,” Lab Chip 7(4), 520522 (2007).
127. K.-D. Huang and R.-J. Yang, “Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel,” Microfluid. Nanofluid. 5(5), 631638 (2008).
128. Z. Xu, J.-K. Wen, C. Liu, J.-S. Liu, L.-Q. Du, and L.-D. Wang, “Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels,” Microfluid. Nanofluid. 7(3), 423429 (2009).
129. L. Shui, A. Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid. 11(1), 8792 (2011).
130. Q. S. Pu, J. S. Yun, H. Temkin, and S. R. Liu, “Ion-enrichment and ion-depletion effect of nanochannel structures,” Nano Lett. 4(6), 10991103 (2004).
131. S. Liu, Q. Pu, L. Gao, C. Korzeniewski, and C. Matzke, “From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell,” Nano Lett. 5(7), 13891393 (2005).
132. R. B. Schoch, L. F. Cheow, and J. Han, “Electrical detection of fast reaction kinetics in nanochannels with an induced flow,” Nano Lett. 7(12), 38953900 (2007).
133. J. J. Jones, J. R. van der Maarel, and P. S. Doyle, “Effect of nanochannel geometry on DNA structure in the presence of macromolecular crowding agent,” Nano Lett. 11(11), 50475053 (2011).
134. I. H. Chou, M. Benford, H. T. Beier, G. L. Cote, M. Wang, N. Jing, J. Kameoka, and T. A. Good, “Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy,” Nano Lett. 8(6), 17291735 (2008).
135. D. Stein, Z. Deurvorst, F. H. van der Heyden, W. J. Koopmans, A. Gabel, and C. Dekker, “Electrokinetic concentration of DNA polymers in nanofluidic channels,” Nano Lett. 10(3), 765772 (2010).
136. P. Mao and J. Han, “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” Lab Chip 5(8), 837844 (2005).
137. K. Pappaert, J. Biesemans, D. Clicq, S. Vankrunkelsven, and G. Desmet, “Measurements of diffusion coefficients in 1-D micro- and nanochannels using shear-driven flows,” Lab Chip 5(10), 11041110 (2005).
138. N. F. Y. Durand, A. Bertsch, M. Todorova, and P. Renaud, “Direct measurement of effective diffusion coefficients in nanochannels using steady-state dispersion effects,” Appl. Phys. Lett. 91(20), 203106 (2007).
139. N. F. Durand and P. Renaud, “Label-free determination of protein-surface interaction kinetics by ionic conductance inside a nanochannel,” Lab Chip 9(2), 319324 (2009).
140. A. Plecis, R. B. Schoch, and P. Renaud, “Ionic transport phenomena in nanofluidics: Experimental and theoretical study of the exclusion-enrichment effect on a chip,” Nano Lett. 5(6), 11471155 (2005).
141. R. B. Schoch, A. Bertsch, and P. Renaud, “pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip,” Nano Lett. 6(3), 543547 (2006).
142. G. Yossifon, Y.-C. Chang, and H.-C. Chang, “Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization,” Phys. Rev. Lett. 103(15), 154502 (2009).
143. V. R. Mokkapati, V. Di Virgilio, C. Shen, J. Mollinger, J. Bastemeijer, and A. Bossche, “DNA tracking within a nanochannel: Device fabrication and experiments,” Lab Chip 11(16), 27112719 (2011).
144. H. T. Hoang, I. M. Segers-Nolten, N. R. Tas, J. W. van Honschoten, V. Subramaniam, and M. C. Elwenspoek, “Analysis of single quantum-dot mobility inside 1D nanochannel devices,” Nanotechnology 22(27), 275201 (2011).
145. K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Perot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345350 (2007).
146. M. Krishnan, I. Monch, and P. Schwille, “Spontaneous stretching of DNA in a two-dimensional nanoslit,” Nano Lett. 7(5), 12701275 (2007).
147. F. Persson, L. H. Thamdrup, M. B. L. Mikkelsen, S. E. Jaarlgard, P. Skafte-Pedersen, H. Bruus, A. Kristensen, “Double thermal oxidation scheme for the fabrication of SiO2 nanochannels,” Nanotechnology 18(24), 245301 (2007).
148. A. Grattoni, E. De Rosa, S. Ferrati, Z. Wang, A. Gianesini, X. Liu, F. Hussain, R. Goodall, and M. Ferrari, “Analysis of a nanochanneled membrane structure through convective gas flow,” J. Micromech. Microeng. 19(11), 115018 (2009).
149. C. Wu, Z. Jin, H. Wang, H. Ma, and Y. Wang, “Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate,” J. Micromech. Microeng. 17(12), 23932397 (2007).
150. D. Fine, A. Grattoni, S. Hosali, A. Ziemys, E. De Rosa, J. Gill, R. Medema, L. Hudson, M. Kojic, M. Milosevic, L. Brousseau Iii, R. Goodall, M. Ferrari, and X. Liu, “A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery,” Lab Chip 10(22), 30743083 (2010).
151. D. Fine, A. Grattoni, E. Zabre, F. Hussein, M. Ferrari, and X. Liu, “A low-voltage electrokinetic nanochannel drug delivery system,” Lab Chip 11(15), 25262534 (2011).
152. P. M. Sinha, G. Valco, S. Sharma, X. Liu, and M. Ferrari, “Nanoengineered device for drug delivery application,” Nanotechnology 15(10), S585S589 (2004).
153. C. R. Song and P. S. Wang, “Fabrication of sub-10 nm planar nanofluidic channels through native oxide etch and anodic wafer bonding,” IEEE Trans. Nanotechnol. 9(2), 138141 (2010).
154. W. P. Shih, C. Y. Hui, and N. C. Tien, “Collapse of microchannels during anodic bonding: Theory and experiments,” J. Appl. Phys. 95(5), 28002808 (2004).
155. J. Haneveld, N. R. Tas, N. Brunets, H. V. Jansen, and M. Elwenspoek, “Capillary filling of sub-10 nm nanochannels,” J. Appl. Phys. 104(1), 014309 (2008).
156. H. Y. Wang, R. S. Foote, S. C. Jacobson, J. H. Schneibel, and J. M. Ramsey, “Low temperature bonding for microfabrication of chemical analysis devices,” Sens. Actuators B 45(3), 199207 (1997).
157. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature 446(7139), 10661069 (2007).
158. J. Lee, W. Shen, K. Payer, T. P. Burg, and S. R. Manalis, “Toward attogram mass measurements in solution with suspended nanochannel resonators,” Nano Lett. 10(7), 25372542 (2010).
159. F. Devreux, P. Barboux, M. Filoche, and B. Sapoval, “A simplified model for glass dissolution in water,” J. Mater. Sci. 36(6), 13311341 (2001).
160. B. Ilic, D. Czaplewski, M. Zalalutdinov, B. Schmidt, and H. G. Craighead, “Fabrication of flexible polymer tubes for micro and nanofluidic applications,” J. Vac. Sci. Technol. B 20(6), 24592465 (2002).
161. C. C. Wong, A. Agarwal, N. Balasubramanian, and D. L. Kwong, “Fabrication of self-sealed circular nano/microfluidic channels in glass substrates,” Nanotechnology 18(13), 135304 (2007).
162. L. Ji, J. K. Kim, Q. Ji, K. N. Leung, Y. Chen, and R. A. Gough, “Conformal metal thin-film coatings in high-aspect-ratio trenches using a self-sputtered rf-driven plasma source,” J. Vac. Sci. Technol. B 25(4), 12271230 (2007).
163. P. Mao and J. Han, “Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes,” Lab Chip 9(4), 586591 (2009).
164. J. C. Love, K. E. Paul, and G. M. Whitesides, “Fabrication of nanometer-scale features by controlled isotropic wet chemical etching,” Adv. Mater. 13(8), 604607 (2001).<604::AID-ADMA604>3.0.CO;2-J
165. L. Q. Chen, M. B. Chan-Park, Y. H. Yan, Q. Zhang, C. M. Li, and J. Zhang, “High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask,” Nanotechnology 18(35), 355307 (2007).
166. L. Q. Chen, M. B. Chan-Park, C. Yang, and Q. Zhang, “The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area,” Nanotechnology 19(15), 155301 (2008).
167. Q. Xie, Q. Zhou, F. Xie, J. Sang, W. Wang, H. A. Zhang, W. Wu, and Z. Li, “Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique,” Biomicrofluidics 6(1), 016502 (2012).
168. H. Y. Mao, W. G. Wu, Y. L. Zhang, G. Zhai, and J. Xu, “Fabrication of high-compact nanowires using alternating photoresist ashing and spacer technology,” J. Micromech. Microeng. 20(8), 085029 (2010).
169. R. A. Smith, K. Goldman, W. H. Fissell, A. J. Fleischman, C. A. Zorman, and S. Roy, “Removal of endotoxin from deionized water using micromachined silicon nanopore membranes,” J. Micromech. Microeng. 21(5), 054029 (2011).
170. C. Lee, E. H. Yang, N. V. Myung, and T. George, “A nanochannel fabrication technique without nanolithography,” Nano Lett. 3(10), 13391340 (2003).
171. N. R. Tas, J. W. Berenschot, P. Mela, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “2D-confined nanochannels fabricated by conventional micromachining,” Nano Lett. 2(9), 10311032 (2002).
172. K. Tybrandt, R. Forchheimer, and M. Berggren, “Logic gates based on ion transistors,” Nat. Commun. 3, 871 (2012).
173. E. O. Gabrielsson, K. Tybrandt, and M. Berggren, “Ion diode logics for pH control,” Lab Chip 12(14), 25072513 (2012).
174. H. Kim, J. Kim, E. G. Kim, A. J. Heinz, S. Kwon, and H. Chun, “Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration,” Biomicrofluidics 4(4), 043014 (2010).
175. P. Kim, S. J. Kim, J. Han, and K. Y. Suh, “Stabilization of ion concentration polarization using a heterogeneous nanoporous junction,” Nano Lett. 10(1), 1623 (2010).
176. L. J. Cheng and H. C. Chang, “Microscale pH regulation by splitting water,” Biomicrofluidics 5(4), 046502 (2011).
177. Y. A. Song, R. Melik, A. N. Rabie, A. M. S. Ibrahim, D. Moses, A. Tan, J. Han, and S. J. Lin, “Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes,” Nature Mater. 10, 980986 (2011).
178. X. Liu, C. Suo, Y. Zhang, X. Wang, C. Sun, L. Li, and L. Zhang, “Novel modification of Nafion®117 for a MEMS-based micro direct methanol fuel cell (μDMFC),” J. Micromech. Microeng. 16(9), S226S232 (2006).
179. S. J. Kim and J. Han, “Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications,” Anal. Chem. 80(9), 35073511 (2008).
180. J. H. Lee, Y. A. Song, and J. Han, “Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane,” Lab Chip 8(4), 596601 (2008).
181. R. Kwak, S. J. Kim, and J. Han, “Continuous-flow biomolecule and cell concentrator by ion concentration polarization,” Anal. Chem. 83(19), 73487355 (2011).
182. J. H. Lee and J. Han, “Concentration-enhanced rapid detection of human chorionic gonadotropin (hCG) on a Au surface using a nanofluidic preconcentrator,” Microfluid. Nanofluid. 9(4), 973979 (2010).
183. S. H. Ko, S. J. Kim, L. F. Cheow, L. D. Li, K. H. Kang, and J. Han, “Massively parallel concentration device for multiplexed immunoassays,” Lab Chip 11(7), 13511358 (2011).
184. A. Sarkar and J. Han, “Non-linear and linear enhancement of enzymatic reaction kinetics using a biomolecule concentrator,” Lab Chip 11(15), 25692576 (2011).
185. L. F. Cheow and J. Han, “Continuous signal enhancement for sensitive aptamer affinity probe electrophoresis assay using electrokinetic concentration,” Anal. Chem. 83(18), 70867093 (2011).
186. O. Jännig and N.-T. Nguyen, “A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane,” Microfluid. Nanofluid. 10(3), 513519 (2010).
187. S. P. Adiga, C. Jin, L. A. Curtiss, N. A. Monteiro-Riviere, and R. J. Narayan, “Nanoporous membranes for medical and biological applications,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1(5), 568581 (2009).
188. S. K. Vajandar, D. Xu, D. A. Markov, J. P. Wikswo, W. Hofmeister, and D. Li, “SiO2-coated porous anodic alumina membranes for high flow rate electroosmotic pumping,” Nanotechnology 18(27), 275705 (2007).
189. M. Ali, P. Ramirez, S. Mafe, R. Neumann, and W. Ensinger, “A pH-tunable nanofluidic diode with a broad range of rectifying properties,” ACS Nano 3(3), 603608 (2009).
190. H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville, and P. Ryser, “Size-selective diffusion in nanoporous but flexible membranes for glucose sensors,” ACS Nano 3(4), 924932 (2009).
191. F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum OxideChem. Mater. 10(9), 24702480 (1998).
192. S. D. Alvarez, C. P. Li, C. E. Chiang, I. K. Schuller, and M. J. Sailor, “A label-free porous alumina interferometric immunosensor,” ACS Nano 3(10), 33013307 (2009).
193. X. Wang and S. Smirnov, “Label-free DNA sensor based on surface charge modulated ionic conductance,” ACS Nano 3(4), 10041010 (2009).
194. S. J. Li, J. Li, K. Wang, C. Wang, J. J. Xu, H. Y. Chen, X. H. Xia, and Q. Huo, “A nanochannel array-based electrochemical device for quantitative label-free DNA analysis,” ACS Nano 4(11), 64176424 (2010).
195. S. Lee, M. Park, H. S. Park, Y. Kim, S. Cho, J. H. Cho, J. Park, and W. Hwang, “A polyethylene oxide-functionalized self-organized alumina nanochannel array for an immunoprotection biofilter,” Lab Chip 11(6), 10491053 (2011).
196. J. Y. Miao, Z. L. Xu, X. Y. Zhang, N. Wang, Z. Y. Yang, and P. Sheng, “Micropumps based on the enhanced electroosmotic effect of aluminum oxide membranes,” Adv. Mater. 19(23), 42344237 (2007).
197. Y.-F. Chen, M.-C. Li, Y.-H. Hu, W.-J. Chang, and C.-C. Wang, “Low-voltage electroosmotic pumping using porous anodic alumina membranes,” Microfluid. Nanofluid. 5(2), 235244 (2007).
198. S. Biring, K. T. Tsai, U. K. Sur, and Y. L. Wang, “High speed fabrication of aluminum nanostructures with 10 nm spatial resolution by electrochemical replication,” Nanotechnology 19(35), 355302 (2008).
199. S. Shin, B. S. Kim, J. Song, H. Lee, and H. H. Cho, “A facile route for the fabrication of large-scale gate-all-around nanofluidic field-effect transistors with low leakage current,” Lab Chip 12(14), 25682574 (2012).
200. T. Xu, G. Zangari, and R. M. Metzger, “Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina,” Nano Lett. 2(1), 3741 (2002).
201. E. Moyen, L. Santinacci, L. Masson, W. Wulfhekel, and M. Hanbucken, “A novel self-ordered sub-10 nm nanopore template for nanotechnology,” Adv. Mater. 24(7), 50945098 (2012).
202. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura, and H. Masuda, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” J. Vac. Sci. Technol. B 19(2), 569572 (2001).
203. C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78(1), 120122 (2001).
204. C. Y. Peng, C. Y. Liu, N. W. Liu, H. H. Wang, A. Datta, and Y. L. Wang, “Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-beam patterned aluminum,” J. Vac. Sci. Technol. B 23(2), 559562 (2005).
205. N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays,” Appl. Phys. Lett. 82(8), 12811283 (2003).
206. N. W. Liu, A. Datta, C. Y. Liu, C. Y. Peng, H. H. Wang, and Y. L. Wang, “Fabrication of anodic-alumina films with custom-designed arrays of nanochannels,” Adv. Mater. 17(2), 222225 (2005).
207. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused−ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. 20(13), 25472551 (2008).
208. P. Y. Apel, “Track etching technique in membrane technology,” Radiat. Meas. 34, 559566 (2001).
209. M. Ali, Ph.D. dissertation, der Technischen Universitat Darmstadt, 2009.
210. L. Wen and L. Jiang, “Bio-inspired smart gating nanochannels based on polymer films,” Sci. China Chem. 54(10), 15371546 (2011).
211. P. Y. Apel and S. N. Dmitriev, “Micro- and nanoporous materials produced using accelerated heavy ion beams,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 013002 (2011).
212. P. Y. Apel, Y. E. Korchev, Z. S. Siwy, R. Spohr, and M. Yoshida, “Diode-like single-ion track membrane prepared by electro-stopping,” Nucl. Instrum. Methods Phys. Res. B 184(3), 337346 (2001).
213. P. Y. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, A. Presz, and B. A. Sartowska, “Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles,” Nanotechnology 18(30), 305302 (2007).
214. P. Y. Apel, I. V. Blonskaya, O. L. Orelovitch, B. A. Sartowska, and R. Spohr, “Asymmetric ion track nanopores for sensor technology. Reconstruction of pore profile from conductometric measurements,” Nanotechnology 23(22), 225503 (2012).
215. S. F. Yu, S. B. Lee, M. Kang, and C. R. Martin, “Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes,” Nano Lett. 1(9), 495498 (2001).
216. E. N. Gatimu, T. L. King, J. V. Sweedler, and P. W. Bohn, “Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes,” Biomicrofluidics 1(2), 021502 (2007).
217. S. A. Miller, K. C. Kelly, and A. T. Timperman, “Ionic current rectification at a nanofluidic/microfluidic interface with an asymmetric microfluidic system,” Lab Chip 8(10), 17291732 (2008).
218. R. Spohr, C. Zet, B. Eberhard Fischer, H. Kiesewetter, P. Apel, I. Gunko, T. Ohgai, and L. Westerberg, “Controlled fabrication of ion track nanowires and channels,” Nucl. Instrum. Methods Phys. Res. B 268(6), 676686 (2010).
219. Q. Yu and Z. Silber-Li, “Measurements of the ion-depletion zone evolution in a micro/nano-channel,” Microfluid. Nanofluid. 11(5), 623631 (2011).
220. I. Vlassiouk and Z. S. Siwy, “Nanofluidic diode,” Nano Lett. 7 (3), 552556 (2007).
221. J. Xue, Y. Xie, Y. Yan, J. Ke, and Y. Wang, “Surface charge density of the track-etched nanopores in polyethylene terephthalate foils,” Biomicrofluidics 3(2), 022408 (2009).
222. M. Davenport, A. Rodriguez, K. J. Shea, and Z. S. Siwy, “Squeezing ionic liquids through nanopores,” Nano Lett. 9(5), 21252128 (2009).
223. I. Vlassiouk, T. R. Kozel, and Z. S. Siwy, “Biosensing with nanofluidic diodes,” J. Am. Chem. Soc. 131(23), 82118220 (2009).
224. Z. Guo, J. Wang, and E. Wang, “Selective discrimination of small hydrophobic biomolecules based on ion-current rectification in conically shaped nanochannel,” Talanta 89, 253257 (2012).
225. A. Mara, Z. S. Siwy, C. Trautmann, J. Wan, and F. Kamme, “An asymmetric polymer nanopore for single molecule detection,” Nano Lett. 4 (3), 497501 (2004).
226. Q. H. Nguyen, M. Ali, V. Bayer, R. Neumann, and W. Ensinger, “Charge-selective transport of organic and protein analytes through synthetic nanochannels,” Nanotechnology 21(36), 365701 (2010).
227. X. Hou, W. Guo, F. Xia, F. Q. Nie, H. Dong, Y. Tian, L. Wen, L. Wang, L. Cao, Y. Yang, J. Xue, Y. Song, Y. Wang, D. Liu, and L. Jiang, “A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore,” J. Am. Chem. Soc. 131(22), 78007805 (2009).
228. E. A. Heins, Z. S. Siwy, L. A. Baker, and C. R. Martin, “Detecting single porphyrin molecules in a conically shaped synthetic nanopore,” Nano Lett. 5(9), 18241829 (2005).
229. J. Wang and C. R. Martin, “A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore,” Nanomedicine 3(1), 1320 (2008).
230. W. Guo, H. Xia, L. Cao, F. Xia, S. Wang, G. Zhang, Y. Song, Y. Wang, L. Jiang, and D. Zhu, “Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes,” Adv. Funct. Mater. 20(20), 35613567 (2010).
231. E. A. Jackson and M. A. Hillmyer, “Nanoporous membranes derived from block copolymers: From drug delivery to water filtration,” ACS Nano 4(7), 35483553 (2010).
232. S. Y. Yang, S. Son, S. Jang, H. Kim, G. Jeon, W. J. Kim, and J. K. Kim, “DNA-functionalized nanochannels for SNP detection,” Nano Lett. 11(3), 10321035 (2011).
233. S. Biring, K. T. Tsai, U. K. Sur, and Y. L. Wang, “Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays,” Nanotechnology 19(1), 015304 (2008).
234. R. W. Mao, S. K. Lin, and C. S. Tsai, “In situ preparation of an ultra-thin nanomask on a silicon wafer,” Nanotechnology 20(2), 025301 (2009).
235. C. J. Chang, C. S. Yang, Y. J. Chuang, H. S. Khoo, and F. G. Tseng, “Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration,” Nanotechnology 19(36), 365301 (2008).
236. D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self-assembly work?,” Adv. Mater. 16(16), 13931399 (2004).
237. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143149 (1997).
238. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829832 (1997).
239. O. D. Velev and E. W. Kaler, “Structured porous materials via colloidal crystal templating: From inorganic oxides to metals,” Adv. Mater. 12(7), 531534 (2000).<531::AID-ADMA531>3.0.CO;2-S
240. Y. Zeng and D. J. Harrison, “Self assemble colloidal arrays as three dimensional nanofluidic sieves for separation of biomolecules on microchips,” Anal. Chem. 79(6), 22892295 (2007).
241. C.-W. Kuo, J.-Y. Shiu, K. H. Wei, and P. Chen, “Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation,” J. Chromatogr. A 1162(2), 175179 (2007).
242. Y. Zeng, M. He, and D. J. Harrison, “Microfluidic self-patterning of large-scale crystalline nanoarrays for high-throughput continuous DNA fractionation,” Angew. Chem., Int. Ed. 47(34), 63886391 (2008).
243. S. H. Yazdi and I. M. White, “A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection,” Biomicrofluidics 6(1), 014105 (2012).
244. Z. Chen, Y. Wang, W. Wang, and Z. Li, “Nanofluidic electrokinetics in nanoparticle crystal,” Appl. Phys. Lett. 95(10), 102105 (2009).
245. J. Chen, P.-C. Huang, and M.-G. Lin, “Analysis and experiment of capillary valves for microfluidics on a rotating disk,” Microfluid. Nanofluid. 4(5), 427437 (2008).
246. E. Choi, K. Kwon, S. J. Lee, D. Kim, and J. Park, “In-situ self-assembled colloidal crystals within microchannels using one step stemping for direct seawater desalination by ion concentration polarization,” in Proceedings of the 25th International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 13131315.
247. W. Shen, M. Li, C. Ye, L. Jiang, and Y. Song, “Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection,” Lab Chip 12(17), 30893095 (2012).
248. Y. Lei, F. Xie, W. Wang, W. Wu, and Z. Li, “Suspended nanoparticle crystal (S-NPC): A nanofluidics-based, electrical read-out biosensor,” Lab Chip 10(18), 23382340 (2010).
249. Y. Lei, W. Wang, W. Wu, and Z. Li, “Nanofluidic diode in a suspended nanoparticle crystal,” Appl. Phys. Lett. 96(26), 263102 (2010).
250. M. Zheng, Y. Lei, W. Wang, W. Wu, and Z. Li, “Current rectification in heterogeneous nanoparticle crystals,” in The International Symposium on Microchemistry and Microsystems (ISMM), Seoul, Korea, 2–4 June, 2011.
251. L. Zhang, F. Gu, L. Tong, and X. Yin, “Simple and cost-effective fabrication of two-dimensional plastic nanochannels from silica nanowire templates,” Microfluid. Nanofluid. 5(6), 727732 (2008).
252. D. A. Czaplewski, J. Kameoka, R. Mathers, G. W. Coates, and H. G. Craighead, “Nanofluidic channels with elliptical cross sections formed using a nonlithographic process,” Appl. Phys. Lett. 83(23), 48364838 (2003).
253. K. S. Chu, S. Kim, H. Chung, J. H. Oh, T. Y. Seong, B. H. An, Y. K. Kim, J. H. Park, Y. R. Do, and W. Kim, “Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates,” Nanotechnology 21(42), 425302 (2010).
254. S. Xu and Y. Zhao, “Monolithic fabrication of nanochannels using core–sheath nanofibers as sacrificial mold,” Microfluid. Nanofluid. 11(3), 359365 (2011).
255. W. Gong, J. Xue, Q. Zhuang, X. Wu, and S. Xu, “Fabrication of nanochannels with water-dissolvable nanowires,” Nanotechnology 21(19), 195302 (2010).
256. U. Vermesh, J. W. Choi, O. Vermesh, R. Fan, J. Nagarah, and J. R. Heath, “Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors,” Nano Lett. 9(4), 13151319 (2009).
257. M. K. Shin, S. K. Kim, H. Lee, S. I. Kim, and S. J. Kim, “The fabrication of polymeric nanochannels by electrospinning,” Nanotechnology 19(19), 195304 (2008).
258. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, “Aligned multiwalled carbon nanotube membranes,” Science 303(5654), 6265 (2004).
259. N. R. Scruggs, J. W. F. Robertson, J. J. Kasianowicz, and K. B. Migler, “Rectification of the ionic current through carbon nanotubes by electrostatic assembly of polyelectrolytes,” Nano Lett. 9(11), 38533859 (2009).
260. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang, “DNA translocation in inorganic nanotubes,” Nano Lett. 5(9), 16331637 (2005).
261. R. Yan, W. Liang, R. Fan, and P. Yang, “Nanofluidic diodes based on nanotube heterojunctions,” Nano Lett. 9(11), 38203825 (2009).
262. H. Liu, J. He, J. Tang, P. Pang, D. Cao, P. Krstic, S. Joseph, S. Lindsay, and C. Nuckolls, “Translocation of single-stranded DNA through single-walled carbon nanotubes,” Science 327(5961), 6467 (2010).
263. P. Pang, J. He, J. H. Park, P. S. Krstic, and S. Lindsay, “Origin of giant ionic currents in carbon nanotube channels,” ACS Nano 5(9), 72777283 (2011).
264. R. Fan, Y. Wu, D. Li, M. Yue, A. Majumdar, and P. Yang, “Fabrication of silica nanotube arrays from vertical silicon nanowire templates,” J. Am. Chem. Soc. 125(18), 52545255 (2003).
265. J. Oh, G. Kim, D. Mattia, and H. Noh, “A novel technique for fabrication of micro- and nanofluidic device with embedded single carbon nanotube,” Sens. Actuators B 154(1), 6772 (2011).
266. X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu, “Measurement of the rate of water translocation through carbon nanotubes,” Nano Lett. 11(5), 21732177 (2011).
267. A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, and O. Bakajin, “Nanofluidics in carbon nanotubes,” Nano Today 2(6), 2229 (2007).
268. J. Goldberger, R. Fan, and P. Yang, “Inorganic nanotubes: A novel platform for nanofluidics,” Acc. Chem. Res. 39(4), 239248 (2006).
269. C. Wang, J. Ouyang, H. L. Gao, H. W. Chen, J. J. Xu, X. H. Xia, and H. Y. Chen, “UV-ablation nanochannels in micro/nanofluidics devices for biochemical analysis,” Talanta 85(1), 298303 (2011).
270. C. Wang, J. Ouyang, D. K. Ye, J. J. Xu, H. Y. Chen, and X. H. Xia, “Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip,” Lab Chip 12(15), 26642671 (2012).
271. X. Hu, Q. He, X. Zhang, and H. Chen, “Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding,” Microfluid. Nanofluid. 10(6), 12231232 (2010).
272. D. Huh, K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama, “Tuneable elastomeric nanochannels for nanofluidic manipulation,” Nature Mater. 6(6), 424428 (2007).
273. K. L. Mills, D. Huh, S. Takayama, and M. D. Thouless, “Instantaneous fabrication of arrays of normally closed, adjustable, and reversible nanochannels by tunnel cracking,” Lab Chip 10(12), 16271630 (2010).
274. B. Y. Xu, J. J. Xu, X. H. Xia, and H. Y. Chen, “Large scale lithography-free nano channel array on polystyrene,” Lab Chip 10(21), 28942901 (2010).
275. H. Yu, Y. Lu, Y. G. Zhou, F. B. Wang, F. Y. He, and X. H. Xia, “A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing,” Lab Chip 8(9), 14961501 (2008).
276. J.-M. Li, C. Liu, X. Ke, Z. Xu, Y.-J. Duan, M. Li, K.-P. Zhang, and L.-D. Wang, “Microchannel refill: A new method for fabricating 2D nanochannels in polymer substrates,” Lab Chip 12(20), 40594062 (2012).
277. G. G. Dougherty, A. A. Pisano, and T. Sands, “Processing and morphology of permeable polycrystalline silicon thin films,” J. Mater. Res. 17(09), 22352242 (2011).
278. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, “Charge- and size-based separation of macromolecules using ultrathin silicon membranes,” Nature 445(7129), 749753 (2007).
279. D. H. Choi, Y. D. Han, B. K. Lee, S. J. Choi, H. C. Yoon, D. S. Lee, and J. B. Yoon, “Use of a columnar metal thin film as a nanosieve with sub-10 nm pores,” Adv. Mater. 22(32), 44084413 (2012).
280. Z. Y. Wu, C. Y. Li, X. L. Guo, B. Li, D. W. Zhang, Y. Xu, and F. Fang, “Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules,” Lab on a Chip 12(18), 34083412 (2012).
281. S. M. Kim, M. A. Burns, and E. F. Hasselbrink, “Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip,” Anal. Chem. 78(14), 47794785 (2006).
282. C. Wang, S. J. Li, Z. Q. Wu, J. J. Xu, H. Y. Chen, and X. H. Xia, “Study on the kinetics of homogeneous enzyme reactions in a micro/nanofluidics device,” Lab Chip 10(5), 639646 (2010).
283. S. M. Park, Y. S. Huh, H. G. Craighead, D. Erickson, “A method for nanofluidic device prototyping using elastomeric collapse,” Proc. Natl. Acad. Sci. U.S.A. 106(37), 1554915554 (2009).
284. K.-F. Lo and Y.-J. Juang, “Fabrication of long poly(dimethyl siloxane) nanochannels by replicating protein deposit from confined solution evaporation,” Biomicrofluidics 6(2), 026504 (2012).
285. L. J. Steinbock, O. Otto, C. Chimerel, J. Gornall, and U. F. Keyser, “Detecting DNA folding with nanocapillaries,” Nano Lett. 10(7), 24932497 (2010).
286. B. Yalizay, T. Ersoy, B. Soylu, and S. Akturk, “Fabrication of nanometer-size structures in metal thin films using femtosecond laser Bessel beams,” Appl. Phys. Lett. 100(3), 031104 (2012).
287. P. Utko, F. Persson, A. Kristensen, and N. B. Larsen, “Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments,” Lab Chip 11(2), 303308 (2011).
288. J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, “Characterization of individual polynucleotide molecules using a membrane channel,” Proc. Natl. Acad. Sci. U.S.A. 93, 1377013773 (1996).
289. L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux, “Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore,” Science 274(5294), 18591866 (1996).
290. R. F. Purnell and J. J. Schmidt, “Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore,” ACS Nano 3(9), 25332538 (2009).
291. Y. Wang, D. Zheng, Q. Tan, M. X. Wang, and L. Q. Gu, “Nanopore-based detection of circulating microRNAs in lung cancer patients,” Nat. Nanotechnol. 6(10), 668674 (2011).
292. L. Movileanu, S. Howorka, O. Braha, and H. Bayley, “Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore,” Nat. Biotechnol. 18, 10911095 (2000).
293. D. Rotem, L. Jayasinghe, M. Salichou, and H. Bayley, “Protein detection by nanopores equipped with aptamers,” J. Am. Chem. Soc. 134(5), 27812787 (2012).
294. S. Howorka, L. Movileanu, O. Braha, and H. Bayley, “Kinetics of duplex formation for individual DNA strands within a single protein nanopore,” Proc. Natl. Acad. Sci. U.S.A. 98(23), 1299613001 (2001).
295. H. Miedema, M. Vrouenraets, J. Wierenga, W. Meijberg, G. Robillard, and B. Eisenberg, “A biological porin engineered into a molecular, nanofluidic diode,” Nano Lett. 7(9), 28862891 (2007).
296. T. Z. Butler, M. Pavlenok, I. M. Derrington, M. Niederweis, and J. H. Gundlach, “Single-molecule DNA detection with an engineered MspA protein nanopore,” Proc. Natl. Acad. Sci. U.S.A. 105(52), 2064720652 (2008).
297. A. Khoutorsky, A. Heyman, O. Shoseyov, and M. E. Spira, “Formation of hydrophilic nanochannels in the membrane of living cells by the ringlike stable protein-SP1,” Nano Lett. 11(7), 29012904 (2011).
298. H. Bayley and L. Jayasinghe, “Functional engineered channels and pores (Review),” Mol. Membr. Biol. 21(4), 209220 (2004).
299. L. J. Cheng and L. J. Guo, “Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices,” ACS Nano 3(3), 575584 (2009.
300. B. Arkles, “Tailoring surfaces with silanes,” CHEMTECH 7, 766778 (1977).
301. P. Mao, Master's thesis, “Fabrication and characterization of nanofluidic channels for studying molecular dynamics in confined environments” (Massachusetts Institute of Technology, 2005).
302. A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, “Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites,” Chem. Mater. 15(16), 31983201 (2003).
303. J. L. Bahr and J. M. Tour, “Covalent chemistry of single-wall carbon nanotubes,” J. Mater. Chem. 12(7), 19521958 (2002).
304. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, “Organic functionalization of carbon nanotubes,” J. Am. Chem. Soc. 124(5), 760761 (2002).
305. N. N. Li, A. G. Fane, W. S. Winston, and T. Matsuura, Advanced Membrane Technology and Applications (John Wiley & Sons, Inc., 2008).
306. G. F. Schneider and C. Dekker, “DNA sequencing with nanopores,” Nat. Biotechnol. 30(4), 326328 (2012).
307. L. Q. Gu and J. W. Shim, “Single molecule sensing by nanopores and nanopore devices,” Analyst 135, 441451 (2010).
308. R. Spohr, “Status of ion track technology—Prospects of single tracks,” Radiat. Meas. 40, 191202 (2005).
309. R. Fan, S. Huh, R. Yan, J. Arnold, and P. Yang, “Gated proton transport in aligned mesoporous silica films,” Nature Mater. 7(4), 303307 (2008).
310. Y. C. Wang, A. L. Stevens, and J. Han, “Million-fold preconcentration of proteins and peptides by nanofluidic filter,” Anal. Chem. 77(14), 42934299 (2005).
311. J. Fu, P. Mao, and J. Han, “Nanofilter array chip for fast gel-free biomolecule separation,” Appl. Phys. Lett. 87, 263902 (2005).
312. D. Stein, M. Kruithof, and C. Dekker, “Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel,” Phys. Rev. Lett. 99(4), 044501 (2007).
313. J. Yeom, Y. Wu, J. C. Selby, and M. A. Shannon, “Maximum achievable aspect ratio in deep reactive ion etching of silicon due to aspect ratio dependent transport and the microloading effect,” J. Vac. Sci. Technol. B 23(6), 23192329 (2005).
314. E. A. Strychalski, S. M. Stavis, and H. G. Craighead, “Non-planar nanofluidic devices for single molecule analysis fabricated using nanoglassblowing,” Nanotechnology 1931, 315301 (2008).
315. S. Howorka and Z. S. Siwy, “Nanopores as protein sensors,” Nat. Biotechnol. 30(6), 506507 (2012).
316. B. W. Ward, J. A. Notte, and N. P. Economou, “Helium ion microscope: A new tool for nanoscale microscopy and metrology,” J. Vac. Sci. Technol. B 24, 28712874 (2006).
317. V. Sidorkin, E. van Veldhoven, E. van der Drift, P. Alkemade, H. Salemink, and D. Maas, “Sub-10-nm nanolithography with a scanning helium beam,” J. Vac. Sci. Technol. B 27(4), L18L20 (2009).
318. F. Xie, Y. Wang, W. Wang, Z. Li, G. Yossifon, and H.-C. Chang, “Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers,” J. Nanosci. Nanotechnol. 10(11), 72777281 (2010).
319. H. Daiguji, N. Tatsumi, S. Kataoka, and A. Endo, “One-dimensional alignment of SBA-15 films in microtrenches,” Langmuir 25(19), 1122111224 (2009).
320. H. Daiguji, D. Nakayama, A. Takahashi, S. Kataoka, and A. Endo, “Ion transport in mesoporous silica thin films,” in Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, 13–17 March 2011.
321. H. Daiguji, J. Hwang, A. Takahashi, S. Kataoka, and A. Endo, “Ion transport in mesoporous silica SBA-16 thin films with 3D cubic structures,” Langmuir 28(7), 36713677 (2012).

Data & Media loading...


Article metrics loading...



Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd