Important Notice Regarding Scitation Services

Scitation will be upgrading its access control system between July 4 and July 10, 2014. During this process, existing subscriptions and purchased content will remain available and unaffected, but some site and personal account functionality will be disabled.

Services will be fully restored on July 10, 2014. Thank you for your patience!

Click here for complete details.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
Rent this article for
Access full text Article
1. M. Danova, M. Torchio, and G. Mazzini, “Isolation of rare circulating tumor cells in cancer patients: Technical aspects and clinical implications,” Expert Rev. Mol. Diagn. 11, 473485 (2011).
2. D. C. Colter, I. Sekiya, and D. J. Prockop, “Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells,” Proc. Natl. Acad. Sci. 98, 78417845 (2001).
3. K. Jo, Y.-L. Chen, J. J. de Pablo, and D. C. Schwartz, “Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows,” Lab Chip 9, 23482355 (2009).
4. P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Tropica 89, 357369 (2004).
5. A. van de Stolpe, K. Pantel, S. Sleijfer, L. W. Terstappen, and J. M. J. den Toonder, “Circulating tumor cell isolation and diagnostics: Toward routine clinical use,” Cancer Res. 71, 59555960 (2011).
6. X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7, 170178 (2007).
7. J. den Toonder, “Circulating tumor cells: The grand challenge,” Lab Chip 11, 375377 (2011).
8. D. Gänshirt, F. W. M. Smeets, A. Dohr, C. Walde, I. Steen, C. Lapucci, C. Falcinelli, R. Sant, M. Velasco, and H. S. P. Garritsen, “Enrichment of fetal nucleated red blood cells from the maternal circulation for prenatal diagnosis: Experiences with triple density gradient and MACS based on more than 600 cases,” Fetal Diagn. Ther. 13, 276286 (1998).
9. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans et al., “Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulating tumor cells,” Am. J. Pathol. 156, 5763 (2000).
10. C. Alix-Panabières, J. Vendrell, O. Pellé, X. Rebillard, S. Riethdorf, V. Müller, M. Fabbro, and K. Pantel, “Detection and characterization of putative metastatic precursor cells in cancer patients,” Clin. Chem. 53, 537539 (2007).
11. H. M. Shapiro, Practical Flow Cytometry, 4th ed. (Wiley-Liss, New York, 2003).
12. S. Miltenyi, W. Müller, W. Weichel, and A. Radbruch, “High gradient magnetic cell separation with MACS,” Cytometry 11, 231238 (1990).
13. A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 9991014 (2010).
14. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature (London) 457, 7175 (2009).
15. A. E. Cohen, “Control of nanoparticles with arbitrary two-dimensional force fields,” Phys. Rev. Lett. 94, 118102 (2005).
16. H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Appl. Phys. Lett. 85, 10631065 (2004).
17. M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall, S. Johansson, M. Almqvist, T. Laurell, and J. Nilsson, “Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays,” Anal. Chem. 79, 29842991 (2007).
18. R. Dylla-Spears, J. E. Townsend, L. Jen-Jacobson, L. L. Sohn, and S. J. Muller, “Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point,” Lab Chip 10, 15431549 (2010).
19. R. Pethig, “Review article—dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
20. S. Patel, D. Showers, P. Vedantam, T. R. Tzeng, S. Qian, and X. Xuan, “Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis,” Biomicrofluidics 6, 034102 (2012).
21. Z. Gagnon, J. Mazur, and H. C. Chang, “Glutaraldehyde enhanced dielectrophoretic yeast cell separation,” Biomicrofluidics 3, 044108 (2009).
22. M. Muratore, V. Srsen, M. Waterfall, A. Downes, and R. Pethig, “Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy,” Biomicrofluidics 6, 034113 (2012).
23. S. N. Murthy, “Magnetophoresis: An approach to enhance transdermal drug diffusion,” Die Pharmazie 54, 377 (1999).
24. J. S. Heyman, “Acoustophoresis separation method,” U.S. patent 5,192,450 (1993).
25. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature (London) 426, 421424 (2003).
26. M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76, 54655471 (2004).
27. T. A. Crowley and V. Pizziconi, “Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications,” Lab Chip 5, 922929 (2005).
28. S. Yang, A. Ündar, and J. D. Zahn, “A microfluidic device for continuous, real time blood plasma separation,” Lab Chip 6, 871880 (2006).
29. S. Choi, S. Song, C. Choi, and J. K. Park, “Continuous blood cell separation by hydrophoretic filtration,” Lab Chip 7, 15321538 (2007).
30. J. A. Davis, D. W. Inglis, K. J. Morton, D. A. Lawrence, L. R. Huang, S. Y. Chou, J. C. Sturm, and R. H. Austin, “Deterministic hydrodynamics: Taking blood apart,” Proc. Natl. Acad. Sci. 103, 1477914784 (2006).
31. J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83, 647 (2011).
32. A. Lenshof and T. Laurell, “Continuous separation of cells and particles in microfluidic systems,” Chem. Soc. Rev. 39, 12031217 (2010).
33. X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9, 116 (2010).
34. D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397, 32493267 (2010).
35. J. Chen, J. Li, and Y. Sun, “Microfluidic approaches for cancer cell detection, characterization, and separation,” Lab Chip 12, 17531767 (2012).
36. J. Autebert, B. Coudert, F. C. Bidard, J. Y. Pierga, S. Descroix, L. Malaquin, and J. L. Viovy, “Microfluidic: An innovative tool for efficient cell sorting,” Methods 57, 297307 (2012).
37. H. Chang and G. Yossifon, “Understanding electrokinetics at the nanoscale: A perspective,” Biomicrofluidics 3, 012001 (2009).
38. L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3, 012002 (2009).
39. J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141157 (2009).
40. L. G. Leal, “Particle motions in a viscous fluid,” Annu. Rev. Fluid Mech. 12, 435476 (1980).
41. L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University Press, Cambridge, 2007).
42. G. Segre, “Radial particle displacements in Poiseuille flow of suspensions,” Nature (London) 189, 209210 (1961).
43. G. Segre and A. Silberberg, “Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams,” J. Fluid Mech. 14, 115135 (1962).
44. G. Segre and A. Silberberg, “Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation,” J. Fluid Mech. 14, 136157 (1962).
45. J. P. Matas, J. F. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59, 5970 (2004).
46. B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows,” J. Fluid Mech. 65, 365400 (1974).
47. R. G. Cox and S. K. Hsu, “The lateral migration of solid particles in a laminar flow near a plane,” Int. J. Multiphase Flow 3, 201222 (1977).
48. J. A. Schonberg and E. J. Hinch, “Inertial migration of a sphere in Poiseuille flow,” J. Fluid Mech. 203, 517524 (1989).
49. A. J. Hogg, “The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows,” J. Fluid Mech. 272, 285318 (1994).
50. E. S. Asmolov, “The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number,” J. Fluid Mech. 381, 6387 (1999).
51. E. S. Asmolov, “The inertial lift on a small particle in a weak-shear parabolic flow,” Phys. Fluids 14, 15 (2002).
52. J. S. Halow and G. B. Wills, “Radial migration of spherical particles in Couette systems,” AIChE J. 16, 281286 (1970).
53. J. P. Matas, J. F. Morris, and E. Guazzelli, “Inertial migration of rigid spherical particles in Poiseuille flow,” J. Fluid Mech. 515, 171195 (2004).
54. Y. S. Choi, K. W. Seo, and S. J. Lee, “Lateral and cross-lateral focusing of spherical particles in a square microchannel,” Lab Chip 11, 460465 (2011).
55. J. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows,” J. Fluid Mech. 277, 271301 (1994).
56. L. Zeng, S. Balachandar, and P. Fischer, “Wall-induced forces on a rigid sphere at finite Reynolds number,” J. Fluid Mech. 536, 125 (2005).
57. B. Chun and A. J. C. Ladd, “Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions,” Phys. Fluids 18, 031704 (2006).
58. D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle segregation and dynamics in confined flows,” Phys. Rev. Lett. 102, 94503 (2009).
59. D. R. Gossett, H. T. K. Tse, J. S. Dudani, K. Goda, T. A. Woods, S. W. Graves, and D. Di Carlo, “Inertial manipulation and transfer of microparticles across laminar fluid streams,” Small 8, 27572764 (2012).
60. A. A. S. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Han, “Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation,” Lab Chip 11, 18701878 (2011).
61. J. Oakey, R. W. Applegate, Jr., E. Arellano, D. D. Carlo, S. W. Graves, and M. Toner, “Particle focusing in staged inertial microfluidic devices for flow cytometry,” Anal. Chem. 82, 38623867 (2010).
62. X. Mao, J. R. Waldeisen, and T. J. Huang, “‘Microfluidic drifting’–Implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7, 12601262 (2007).
63. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 1889218897 (2007).
64. S. C. Hur, H. T. K. Tse, and D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10, 274280 (2010).
65. Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9, 11931199 (2009).
66. S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo, “Deformability-based cell classification and enrichment using inertial microfluidics,” Lab Chip 11, 912920 (2011).
67. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab Chip 9, 29732980 (2009).
68. W. Lee, H. Amini, H. A. Stone, and D. Di Carlo, “Dynamic self-assembly and control of microfluidic particle crystals,” Proc. Natl. Acad. Sci. 107, 2241322418 (2010).
69. A. J. Mach and D. Di Carlo, “Continuous scalable blood filtration device using inertial microfluidics,” Biotechnol. Bioeng. 107, 302311 (2010).
70. D. Di Carlo, F. Jon, D. Irimia, R. G. Tompkins, and M. Toner, “Equilibrium separation and filtration of particles using differential inertial focusing,” Anal. Chem. 80, 22042211 (2008).
71. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Inertial microfluidics for continuous particle filtration and extraction,” Microfluid. Nanofluid. 7, 217226 (2009).
72. S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5, 022206 (2011).
73. D. Di Carlo, “Inertial microfluidics,” Lab Chip 9, 30383046 (2009).
74. J. Takagi, M. Yamada, M. Yasuda, and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab Chip 5, 778784 (2005).
75. M. Yamada and M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab Chip 5, 12331239 (2005).
76. L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous particle separation through deterministic lateral displacement,” Science 304, 987990 (2004).
77. D. W. Inglis, J. A. Davis, R. H. Austin, and J. C. Sturm, “Critical particle size for fractionation by deterministic lateral displacement,” Lab Chip 6, 655658 (2006).
78. B. R. Long, M. Heller, J. P. Beech, H. Linke, H. Bruus, and J. O. Tegenfeldt, “Multidirectional sorting modes in deterministic lateral displacement devices,” Phys. Rev. E 78, 046304 (2008).
79. S. Choi and J. K. Park, “Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel,” Lab Chip 7, 890897 (2007).
80. S. Choi, S. Song, C. Choi, and J. K. Park, “Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis,” Anal. Chem. 81, 19641968 (2009).
81. J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9, 939948 (2009).
82. J. S. Park and H. I. Jung, “Multiorifice flow fractionation: Continuous size-based separation of microspheres using a series of contraction/expansion microchannels,” Anal. Chem. 81, 82808288 (2009).
83. A. Karnis and S. G. Mason, “Particle motions in sheared suspensions. XIX. Viscoelastic media,” Trans. Soc. Rheol. 10, 571592 (1966).
84. F. Gauthier, H. L. Goldsmith, and S. G. Mason, “Particle motions in non-Newtonian media. II. Poiseuille flow,” Trans. Soc. Rheol. 15, 297330 (1971).
85. E. Bartram, H. L. Goldsmith, and S. G. Mason, “Particle motions in non-Newtonian media,” Rheol. Acta 14, 776782 (1975).
86. M. A. Tehrani, “An experimental study of particle migration in pipe flow of viscoelastic fluids,” J. Rheol. 40, 10571077 (1996).
87. B. P. Ho and L. G. Leal, “Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid,” J. Fluid Mech. 76, 783 (1976).
88. P. Y. Huang, J. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids,” J. Fluid Mech. 343, 7394 (1997).
89. A. M. Ardekani, R. H. Rangel, and D. D. Joseph, “Motion of a sphere normal to a wall in a second-order fluid,” J. Fluid Mech. 587, 163172 (2007).
90. A. M. Ardekani, R. H. Rangel, and D. D. Joseph, “Two spheres in a free stream of a second-order fluid,” Phys. Fluids 20, 063101 (2008).
91. S. A. Dhahir and K. Walters, “On non-Newtonian flow past a cylinder in a confined flow,” J. Rheol. 33, 781804 (1989).
92. P. Y. Huang and D. D. Joseph, “Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids,” J. Non-Newtonian Fluid Mech. 90, 159185 (2000).
93. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids: Fluid Mechanics (John Wiley and Sons, Inc., New York, NY, 1987), Vol. 1.
94. A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microfluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
95. S. Yang, S. S. Lee, S. W. Ahn, K. Kang, W. Shim, G. Lee, K. Hyun, and J. M. Kim, “Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity,” Soft Matter 8, 50115019 (2012).
96. G. D'Avino, P. L. Maffettone, F. Greco, and M. A. Hulsen, “Viscoelasticity-induced migration of a rigid sphere in confined shear flow,” J. Non-Newtonian Fluid Mech. 165, 466474 (2010).
97. G. D'Avino, G. Romeo, M. M. Villone, F. Greco, P. A. Netti, and P. L. Maffettone, “Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser,” Lab Chip 12, 16381645 (2012).
98. J. Y. Kim, S. W. Ahn, S. S. Lee, and J. M. Kim, “Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow,” Lab Chip 12, 28072814 (2012).
99. S. Yang, J. Y. Kim, S. J. Lee, S. S. Lee, and J. M. Kim, “Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel,” Lab Chip 11, 266273 (2011).
100. J. Nam, H. Lim, D. Kim, H. Jung, and S. Shin, “Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid,” Lab Chip 12, 13471354 (2012).
101. A. M. Dondorp, P. A. Kager, J. Vreeken, and N. J. White, “Abnormal blood flow and red blood cell deformability in severe malaria,” Parasitol. Today 16, 228232 (2000).
102. F. C. Mokken, M. Kedaria, C. P. Henny, M. R. Hardeman, and A. W. Gelb, “The clinical importance of erythrocyte deformability, a hemorrheological parameter,” Ann. Hematol. 64, 113122 (1992).
103. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2, 780783 (2007).
104. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater. 55, 39894014 (2007).
105. S. K. Ballas, “Sickle cell anemia with few painful crises is characterized by decreased red cell deformability and increased number of dense cells,” Am. J. Hematol. 36, 122130 (2006).
106. P. C. H. Chan and L. G. Leal, “The motion of a deformable drop in a second-order fluid,” J. Fluid Mech. 92, 131170 (1979).
107. F. Takemura, S. Takagi, J. Magnaudet, and Y. Matsumoto, “Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid,” J. Fluid Mech. 461, 277300 (2002).
108. F. Takemura and J. Magnaudet, “The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number,” J. Fluid Mech. 495, 235253 (2003).
109. J. Magnaudet, S. Takagi, and D. Legendre, “Drag, deformation and lateral migration of a buoyant drop moving near a wall,” J. Fluid Mech. 476, 115157 (2003).
110. S. K. Doddi and P. Bagchi, “Lateral migration of a capsule in a plane Poiseuille flow in a channel,” Int. J. Multiphase Flow 34, 966986 (2008).
111. S. Mortazavi and G. Tryggvason, “A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop,” J. Fluid Mech. 411, 325350 (2000).
112. B. Lorz, R. Simson, J. Nardi, and E. Sackmann, “Weakly adhering vesicles in shear flow: Tanktreading and anomalous lift force,” Europhys. Lett. 51, 468 (2000).
113. S. Sukumaran and U. Seifert, “Influence of shear flow on vesicles near a wall: A numerical study,” Phys. Rev. E 64, 011916 (2001).
114. W. S. J. Uijttewaal, E. J. Nijhof, and R. M. Heethaar, “Droplet migration, deformation, and orientation in the presence of a plane wall: A numerical study compared with analytical theories,” Phys. Fluids A: Fluid Dyn. 5, 819825 (1993).
115. G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20, 111702 (2008).
116. M. Abkarian and A. Viallat, “Dynamics of vesicles in a wall-bounded shear flow,” Biophys. J. 89, 10551066 (2005).
117. M. Abkarian and A. Viallat, “Vesicles and red blood cells in shear flow,” Soft Matter 4, 653657 (2008).
118. U. Seifert, K. Berndl, and R. Lipowsky, “Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models,” Phys. Rev. A 44, 1182 (1991).
119. P. M. Vlahovska and R. S. Gracia, “Dynamics of a viscous vesicle in linear flows,” Phys. Rev. E 75, 016313 (2007).
120. P. M. Vlahovska, T. Podgorski, and C. Misbah, “Vesicles and red blood cells in flow: From individual dynamics to rheology,” C. R. Phys. 10, 775789 (2009).
121. A. J. Griggs, A. Z. Zinchenko, and R. H. Davis, “Low-Reynolds-number motion of a deformable drop between two parallel plane walls,” Int. J. Multiphase Flow 33, 182206 (2007).
122. B. Alberts, Molecular Biology of the Cell, 4th ed. (Garland Science, New York, 2002).
123. R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3, 817827 (2007).
124. S. R. Keller and R. Skalak, “Motion of a tank-treading ellipsoidal particle in a shear flow,” J. Fluid Mech. 120, 2747 (1982).
125. P. Olla, “The lift on a tank-treading ellipsoidal cell in a shear flow,” J. Phys. II 7, 15331540 (1997).
126. G. Danker, P. M. Vlahovska, and C. Misbah, “Vesicles in Poiseuille flow,” Phys. Rev. Lett. 102, 148102 (2009).
127. B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah, and W. Zimmermann, “Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow,” Phys. Rev. E 77, 021903 (2008).
128. T. M. Geislinger, B. Eggart, S. Braunmuller, L. Schmid, and T. Franke, “Separation of blood cells using hydrodynamic lift,” Appl. Phys. Lett. 100, 183701 (2012).
129. W. R. Dean, “Fluid motion in a curved channel,” Proc. R. Soc. London, Ser. A 121, 402420 (1928).
130. S. A. Berger, L. Talbot, and L. S. Yao, “Flow in curved pipes,” Annu. Rev. Fluid Mech. 15, 461512 (1983).
131. S. Ookawara, R. Higashi, D. Street, and K. Ogawa, “Feasibility study on concentration of slurry and classification of contained particles by microchannel,” Chem. Eng. J. 101, 171178 (2004).
132. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Modern Phys. 77, 977 (2005).
133. D. R. Gossett and D. Di Carlo, “Particle focusing mechanisms in curving confined flows,” Anal. Chem. 81, 84598465 (2009).
134. X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 15831589 (2009).
135. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Continuous particle separation in spiral microchannels using Dean flows and differential migration,” Lab Chip 8, 19061914 (2008).
136. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, N. Kaval, C. J. Seliskar, and I. Papautsky, “Inertial microfluidics for sheath-less high-throughput flow cytometry,” Biomed. Microdevices 12, 187195 (2010).
137. J. Wang, Y. Zhan, V. M. Ugaz, and C. Lu, “Vortex-assisted DNA delivery,” Lab Chip 10, 20572061 (2010).
138. J. Zhu and X. Xuan, “Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels,” Biomicrofluidics 5, 024111 (2011).
139. E. W. M. Kemna, R. M. Schoeman, F. Wolbers, I. Vermes, D. A. Weitz, and A. van den Berg, “High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel,” Lab Chip 12, 28812887 (2012).
140. C. Church, J. Zhu, G. Wang, T. R. J. Tzeng, and X. Xuan, “Electrokinetic focusing and filtration of cells in a serpentine microchannel,” Biomicrofluidics 3, 044109 (2009).
141. W. C. Lee, A. A. S. Bhagat, S. Huang, K. J. Van Vliet, J. Han, and C. T. Lim, “High-throughput cell cycle synchronization using inertial forces in spiral microchannels,” Lab Chip 11, 13591367 (2011).
142. C. M. Lin, Y. S. Lai, H. P. Liu, C. Y. Chen, and A. M. Wo, “Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications,” Anal. Chem. 80, 89378945 (2008).
143. H. M. Hertz, “Standing-wave acoustic trap for nonintrusive positioning of microparticles,” J. Appl. Phys. 78, 48454849 (1995).
144. T. M. Squires and M. Z. Bazant, “Induced-charge electro-osmosis,” J. Fluid Mech. 509, 217252 (2004).
145. A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, “Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis,” Phys. Rev. E 61, 40194028 (2000).
146. L. Y. Yeo, D. Hou, S. Maheshswari, and H. Chang, “Electrohydrodynamic surface microvortices for mixing and particle trapping,” Appl. Phys. Lett. 88, 233512 (2006).
147. D. Hou, S. Maheshwari, and H. Chang, “Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering,” Biomicrofluidics 1, 014106 (2007).
148. S. Liu, H. Wei, S. Hwang, and H. Chang, “Dynamic particle trapping, release, and sorting by microvortices on a substrate,” Phys. Rev. E 82, 026308 (2010).
149. D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9, 27382741 (2009).
150. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7, 727731 (2009).
151. R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, “Bubble-induced acoustic micromixing,” Lab Chip 2, 151157 (2002).
152. A. R. Tovar and A. P. Lee, “Lateral cavity acoustic transducer,” Lab Chip 9, 4143 (2009).
153. K. Ryu, S. K. Chung, and S. K. Cho, “Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices,” J. Assoc. Lab Autom. 15, 163171 (2010).
154. Y. Xie, D. Ahmed, M. I. Lapsley, S. C. S. Lin, A. A. Nawaz, L. Wang, and T. J. Huang, “Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer,” Anal. Chem. 84(17), 74957501 (2012).
155. P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature (London) 423, 153156 (2003).
156. C. Wang, S. V. Jalikop, and S. Hilgenfeldt, “Size-sensitive sorting of microparticles through control of flow geometry,” Appl. Phys. Lett. 99, 034101 (2011).
157. C. Wang, S. V. Jalikop, and S. Hilgenfeldt, “Efficient manipulation of microparticles in bubble streaming flows,” Biomicrofluidics 6, 012801 (2012).
158. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: A versatile tool for lab on a chip applications,” Lab Chip 12, 42164227 (2012).
159. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315, 832835 (2007).
160. J. S. Raut, S. D. Stoyanov, C. Duggal, E. G. Pelan, L. N. Arnaudov, and V. M. Naik, “Hydrodynamic cavitation: A bottom-up approach to liquid aeration,” Soft Matter 8, 45624566 (2012).
161. P. Dawson, “The physics of the oscillating bubble made simple,” Eur. J. Radiol. 41, 176178 (2002).
162. W. L. Nyborg, Acoustic Streaming (Academic Press, New York, 1965), Vol. 2.
163. N. Riley, “Steady streaming,” Annu. Rev. Fluid Mech. 33, 4365 (2001).
164. D. L. Miller and E. A. Neppiras, “On the oscillation mode of gas-filled micropores,” J. Acoust. Soc. Am. 77, 946 (1985).
165. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992), Vol. 7.
166. M. Z. Bazant, “Induced-charge electrokinetic phenomena,” in Electrokinetics and Electrohydrodynamics in Microsystems (CISM, 2011), pp. 221297.
167. K. V. Sharp, S. H. Yazdi, and S. M. Davison, “Localized flow control in microchannels using induced-charge electroosmosis near conductive obstacles,” Microfluid. Nanofluid. 10, 12571267 (2011).
168. J. A. Levitan, S. Devasenathipathy, V. Studer, Y. Ben, T. Thorsen, T. M. Squires, and M. Z. Bazant, “Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel,” Colloids Surf., A 267, 122132 (2005).
169. S. H. Yazdi and A. M. Ardekani, “Bacterial aggregation and biofilm formation in a vortical flow,” Biomicrofluidics 6, 044114 (2012).
170. B. R. Lutz, J. Chen, and D. T. Schwartz, “Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and stokes layer scaling,” Phys. Fluids 17, 023601 (2005).
171. B. R. Lutz, J. Chen, and D. T. Schwartz, “Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies,” Anal. Chem. 78, 54295435 (2006).
172. V. H. Lieu, T. A. House, and D. T. Schwartz, “Hydrodynamic tweezers: Impact of design geometry on flow and microparticle trapping,” Anal. Chem. 84, 19631968 (2012).
173. S. Ahuja, Chiral Separations: Applications and Technology (American Chemical Society, Washington, DC, 1997).
174. P. Chen and C. H. Chao, “Lift forces of screws in shear flows,” Phys. Fluids 19, 017108 (2007).
175. M. Makino, L. Arai, and M. Doi, “Shear migration of chiral particle in parallel-disk,” J. Phys. Soc. Jpn. 77, 064404 (2008).
176. Marcos, H. C. Fu, T. R. Powers, and R. Stocker, “Separation of microscale chiral objects by shear flow,” Phys. Rev. Lett. 102, 158103 (2009).
177. W. M. Durham, J. O. Kessler, and R. Stocker, “Disruption of vertical motility by shear triggers formation of thin phytoplankton layers,” Science 323, 10671070 (2009).
178. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics 5, 032009 (2011).
179. A. M. Ardekani and E. Gore, “Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid,” Phys. Rev. E 85, 056309 (2012).

Data & Media loading...


Article metrics loading...



Focusing and sorting cells and particles utilizing microfluidic phenomena have been flourishing areas of development in recent years. These processes are largely beneficial in biomedical applications and fundamental studies of cell biology as they provide cost-effective and point-of-care miniaturized diagnostic devices and rare cell enrichment techniques. Due to inherent problems of isolation methods based on the biomarkers and antigens, separation approaches exploiting physical characteristics of cells of interest, such as size, deformability, and electric and magnetic properties, have gained currency in many medical assays. Here, we present an overview of the cell/particle sorting techniques by harnessing intrinsic hydrodynamic effects in microchannels. Our emphasis is on the underlying fluid dynamical mechanisms causing cross stream migration of objects in shear and vortical flows. We also highlight the advantages and drawbacks of each method in terms of throughput, separation efficiency, and cell viability. Finally, we discuss the future research areas for extending the scope of hydrodynamic mechanisms and exploring new physical directions for microfluidic applications.


Full text loading...

This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hydrodynamic mechanisms of cell and particle trapping in microfluidics