1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Hydrodynamic mechanisms of cell and particle trapping in microfluidics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/bmf/7/2/10.1063/1.4799787
1.
1. M. Danova, M. Torchio, and G. Mazzini, “Isolation of rare circulating tumor cells in cancer patients: Technical aspects and clinical implications,” Expert Rev. Mol. Diagn. 11, 473485 (2011).
http://dx.doi.org/10.1586/erm.11.33
2.
2. D. C. Colter, I. Sekiya, and D. J. Prockop, “Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells,” Proc. Natl. Acad. Sci. 98, 78417845 (2001).
http://dx.doi.org/10.1073/pnas.141221698
3.
3. K. Jo, Y.-L. Chen, J. J. de Pablo, and D. C. Schwartz, “Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows,” Lab Chip 9, 23482355 (2009).
http://dx.doi.org/10.1039/b902292a
4.
4. P. Gascoyne, J. Satayavivad, and M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Tropica 89, 357369 (2004).
http://dx.doi.org/10.1016/j.actatropica.2003.11.009
5.
5. A. van de Stolpe, K. Pantel, S. Sleijfer, L. W. Terstappen, and J. M. J. den Toonder, “Circulating tumor cell isolation and diagnostics: Toward routine clinical use,” Cancer Res. 71, 59555960 (2011).
http://dx.doi.org/10.1158/0008-5472.CAN-11-1254
6.
6. X. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R. G. Tompkins, W. Rodriguez, and M. Toner, “A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects,” Lab Chip 7, 170178 (2007).
http://dx.doi.org/10.1039/B612966H
7.
7. J. den Toonder, “Circulating tumor cells: The grand challenge,” Lab Chip 11, 375377 (2011).
http://dx.doi.org/10.1039/c0lc90100h
8.
8. D. Gänshirt, F. W. M. Smeets, A. Dohr, C. Walde, I. Steen, C. Lapucci, C. Falcinelli, R. Sant, M. Velasco, and H. S. P. Garritsen, “Enrichment of fetal nucleated red blood cells from the maternal circulation for prenatal diagnosis: Experiences with triple density gradient and MACS based on more than 600 cases,” Fetal Diagn. Ther. 13, 276286 (1998).
http://dx.doi.org/10.1159/000020854
9.
9. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans et al., “Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulating tumor cells,” Am. J. Pathol. 156, 5763 (2000).
http://dx.doi.org/10.1016/S0002-9440(10)64706-2
10.
10. C. Alix-Panabières, J. Vendrell, O. Pellé, X. Rebillard, S. Riethdorf, V. Müller, M. Fabbro, and K. Pantel, “Detection and characterization of putative metastatic precursor cells in cancer patients,” Clin. Chem. 53, 537539 (2007).
http://dx.doi.org/10.1373/clinchem.2006.079509
11.
11. H. M. Shapiro, Practical Flow Cytometry, 4th ed. (Wiley-Liss, New York, 2003).
12.
12. S. Miltenyi, W. Müller, W. Weichel, and A. Radbruch, “High gradient magnetic cell separation with MACS,” Cytometry 11, 231238 (1990).
http://dx.doi.org/10.1002/cyto.990110203
13.
13. A. A. S. Bhagat, H. Bow, H. W. Hou, S. J. Tan, J. Han, and C. T. Lim, “Microfluidics for cell separation,” Med. Biol. Eng. Comput. 48, 9991014 (2010).
http://dx.doi.org/10.1007/s11517-010-0611-4
14.
14. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature (London) 457, 7175 (2009).
http://dx.doi.org/10.1038/nature07593
15.
15. A. E. Cohen, “Control of nanoparticles with arbitrary two-dimensional force fields,” Phys. Rev. Lett. 94, 118102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.118102
16.
16. H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Appl. Phys. Lett. 85, 10631065 (2004).
http://dx.doi.org/10.1063/1.1776339
17.
17. M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall, S. Johansson, M. Almqvist, T. Laurell, and J. Nilsson, “Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays,” Anal. Chem. 79, 29842991 (2007).
http://dx.doi.org/10.1021/ac061576v
18.
18. R. Dylla-Spears, J. E. Townsend, L. Jen-Jacobson, L. L. Sohn, and S. J. Muller, “Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point,” Lab Chip 10, 15431549 (2010).
http://dx.doi.org/10.1039/b926847b
19.
19. R. Pethig, “Review article—dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4, 022811 (2010).
http://dx.doi.org/10.1063/1.3456626
20.
20. S. Patel, D. Showers, P. Vedantam, T. R. Tzeng, S. Qian, and X. Xuan, “Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis,” Biomicrofluidics 6, 034102 (2012).
http://dx.doi.org/10.1063/1.4732800
21.
21. Z. Gagnon, J. Mazur, and H. C. Chang, “Glutaraldehyde enhanced dielectrophoretic yeast cell separation,” Biomicrofluidics 3, 044108 (2009).
http://dx.doi.org/10.1063/1.3257857
22.
22. M. Muratore, V. Srsen, M. Waterfall, A. Downes, and R. Pethig, “Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy,” Biomicrofluidics 6, 034113 (2012).
http://dx.doi.org/10.1063/1.4746252
23.
23. S. N. Murthy, “Magnetophoresis: An approach to enhance transdermal drug diffusion,” Die Pharmazie 54, 377 (1999).
24.
24. J. S. Heyman, “Acoustophoresis separation method,” U.S. patent 5,192,450 (1993).
25.
25. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature (London) 426, 421424 (2003).
http://dx.doi.org/10.1038/nature02144
26.
26. M. Yamada, M. Nakashima, and M. Seki, “Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel,” Anal. Chem. 76, 54655471 (2004).
http://dx.doi.org/10.1021/ac049863r
27.
27. T. A. Crowley and V. Pizziconi, “Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications,” Lab Chip 5, 922929 (2005).
http://dx.doi.org/10.1039/B502930A
28.
28. S. Yang, A. Ündar, and J. D. Zahn, “A microfluidic device for continuous, real time blood plasma separation,” Lab Chip 6, 871880 (2006).
http://dx.doi.org/10.1039/b516401j
29.
29. S. Choi, S. Song, C. Choi, and J. K. Park, “Continuous blood cell separation by hydrophoretic filtration,” Lab Chip 7, 15321538 (2007).
http://dx.doi.org/10.1039/b705203k
30.
30. J. A. Davis, D. W. Inglis, K. J. Morton, D. A. Lawrence, L. R. Huang, S. Y. Chou, J. C. Sturm, and R. H. Austin, “Deterministic hydrodynamics: Taking blood apart,” Proc. Natl. Acad. Sci. 103, 1477914784 (2006).
http://dx.doi.org/10.1073/pnas.0605967103
31.
31. J. Friend and L. Yeo, “Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics,” Rev. Mod. Phys. 83, 647 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.647
32.
32. A. Lenshof and T. Laurell, “Continuous separation of cells and particles in microfluidic systems,” Chem. Soc. Rev. 39, 12031217 (2010).
http://dx.doi.org/10.1039/b915999c
33.
33. X. Xuan, J. Zhu, and C. Church, “Particle focusing in microfluidic devices,” Microfluid. Nanofluid. 9, 116 (2010).
http://dx.doi.org/10.1007/s10404-010-0602-7
34.
34. D. R. Gossett, W. M. Weaver, A. J. Mach, S. C. Hur, H. T. K. Tse, W. Lee, H. Amini, and D. Di Carlo, “Label-free cell separation and sorting in microfluidic systems,” Anal. Bioanal. Chem. 397, 32493267 (2010).
http://dx.doi.org/10.1007/s00216-010-3721-9
35.
35. J. Chen, J. Li, and Y. Sun, “Microfluidic approaches for cancer cell detection, characterization, and separation,” Lab Chip 12, 17531767 (2012).
http://dx.doi.org/10.1039/c2lc21273k
36.
36. J. Autebert, B. Coudert, F. C. Bidard, J. Y. Pierga, S. Descroix, L. Malaquin, and J. L. Viovy, “Microfluidic: An innovative tool for efficient cell sorting,” Methods 57, 297307 (2012).
http://dx.doi.org/10.1016/j.ymeth.2012.07.002
37.
37. H. Chang and G. Yossifon, “Understanding electrokinetics at the nanoscale: A perspective,” Biomicrofluidics 3, 012001 (2009).
http://dx.doi.org/10.1063/1.3056045
38.
38. L. Y. Yeo and J. R. Friend, “Ultrafast microfluidics using surface acoustic waves,” Biomicrofluidics 3, 012002 (2009).
http://dx.doi.org/10.1063/1.3056040
39.
39. J. Nilsson, M. Evander, B. Hammarstrom, and T. Laurell, “Review of cell and particle trapping in microfluidic systems,” Anal. Chim. Acta 649, 141157 (2009).
http://dx.doi.org/10.1016/j.aca.2009.07.017
40.
40. L. G. Leal, “Particle motions in a viscous fluid,” Annu. Rev. Fluid Mech. 12, 435476 (1980).
http://dx.doi.org/10.1146/annurev.fl.12.010180.002251
41.
41. L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge University Press, Cambridge, 2007).
42.
42. G. Segre, “Radial particle displacements in Poiseuille flow of suspensions,” Nature (London) 189, 209210 (1961).
http://dx.doi.org/10.1038/189209a0
43.
43. G. Segre and A. Silberberg, “Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams,” J. Fluid Mech. 14, 115135 (1962).
http://dx.doi.org/10.1017/S002211206200110X
44.
44. G. Segre and A. Silberberg, “Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation,” J. Fluid Mech. 14, 136157 (1962).
http://dx.doi.org/10.1017/S0022112062001111
45.
45. J. P. Matas, J. F. Morris, and E. Guazzelli, “Lateral forces on a sphere,” Oil Gas Sci. Technol. 59, 5970 (2004).
http://dx.doi.org/10.2516/ogst:2004006
46.
46. B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows,” J. Fluid Mech. 65, 365400 (1974).
http://dx.doi.org/10.1017/S0022112074001431
47.
47. R. G. Cox and S. K. Hsu, “The lateral migration of solid particles in a laminar flow near a plane,” Int. J. Multiphase Flow 3, 201222 (1977).
http://dx.doi.org/10.1016/0301-9322(77)90001-5
48.
48. J. A. Schonberg and E. J. Hinch, “Inertial migration of a sphere in Poiseuille flow,” J. Fluid Mech. 203, 517524 (1989).
http://dx.doi.org/10.1017/S0022112089001564
49.
49. A. J. Hogg, “The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear flows,” J. Fluid Mech. 272, 285318 (1994).
http://dx.doi.org/10.1017/S0022112094004477
50.
50. E. S. Asmolov, “The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number,” J. Fluid Mech. 381, 6387 (1999).
http://dx.doi.org/10.1017/S0022112098003474
51.
51. E. S. Asmolov, “The inertial lift on a small particle in a weak-shear parabolic flow,” Phys. Fluids 14, 15 (2002).
http://dx.doi.org/10.1063/1.1424306
52.
52. J. S. Halow and G. B. Wills, “Radial migration of spherical particles in Couette systems,” AIChE J. 16, 281286 (1970).
http://dx.doi.org/10.1002/aic.690160222
53.
53. J. P. Matas, J. F. Morris, and E. Guazzelli, “Inertial migration of rigid spherical particles in Poiseuille flow,” J. Fluid Mech. 515, 171195 (2004).
http://dx.doi.org/10.1017/S0022112004000254
54.
54. Y. S. Choi, K. W. Seo, and S. J. Lee, “Lateral and cross-lateral focusing of spherical particles in a square microchannel,” Lab Chip 11, 460465 (2011).
http://dx.doi.org/10.1039/C0LC00212G
55.
55. J. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows,” J. Fluid Mech. 277, 271301 (1994).
http://dx.doi.org/10.1017/S0022112094002764
56.
56. L. Zeng, S. Balachandar, and P. Fischer, “Wall-induced forces on a rigid sphere at finite Reynolds number,” J. Fluid Mech. 536, 125 (2005).
http://dx.doi.org/10.1017/S0022112005004738
57.
57. B. Chun and A. J. C. Ladd, “Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions,” Phys. Fluids 18, 031704 (2006).
http://dx.doi.org/10.1063/1.2176587
58.
58. D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle segregation and dynamics in confined flows,” Phys. Rev. Lett. 102, 94503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.094503
59.
59. D. R. Gossett, H. T. K. Tse, J. S. Dudani, K. Goda, T. A. Woods, S. W. Graves, and D. Di Carlo, “Inertial manipulation and transfer of microparticles across laminar fluid streams,” Small 8, 27572764 (2012).
http://dx.doi.org/10.1002/smll.201200588
60.
60. A. A. S. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Han, “Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation,” Lab Chip 11, 18701878 (2011).
http://dx.doi.org/10.1039/c0lc00633e
61.
61. J. Oakey, R. W. Applegate, Jr., E. Arellano, D. D. Carlo, S. W. Graves, and M. Toner, “Particle focusing in staged inertial microfluidic devices for flow cytometry,” Anal. Chem. 82, 38623867 (2010).
http://dx.doi.org/10.1021/ac100387b
62.
62. X. Mao, J. R. Waldeisen, and T. J. Huang, “‘Microfluidic drifting’–Implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device,” Lab Chip 7, 12601262 (2007).
http://dx.doi.org/10.1039/b711155j
63.
63. D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proc. Natl. Acad. Sci. 104, 1889218897 (2007).
http://dx.doi.org/10.1073/pnas.0704958104
64.
64. S. C. Hur, H. T. K. Tse, and D. Di Carlo, “Sheathless inertial cell ordering for extreme throughput flow cytometry,” Lab Chip 10, 274280 (2010).
http://dx.doi.org/10.1039/b919495a
65.
65. Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9, 11931199 (2009).
http://dx.doi.org/10.1039/b817611f
66.
66. S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo, “Deformability-based cell classification and enrichment using inertial microfluidics,” Lab Chip 11, 912920 (2011).
http://dx.doi.org/10.1039/c0lc00595a
67.
67. S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab Chip 9, 29732980 (2009).
http://dx.doi.org/10.1039/b908271a
68.
68. W. Lee, H. Amini, H. A. Stone, and D. Di Carlo, “Dynamic self-assembly and control of microfluidic particle crystals,” Proc. Natl. Acad. Sci. 107, 2241322418 (2010).
http://dx.doi.org/10.1073/pnas.1010297107
69.
69. A. J. Mach and D. Di Carlo, “Continuous scalable blood filtration device using inertial microfluidics,” Biotechnol. Bioeng. 107, 302311 (2010).
http://dx.doi.org/10.1002/bit.22833
70.
70. D. Di Carlo, F. Jon, D. Irimia, R. G. Tompkins, and M. Toner, “Equilibrium separation and filtration of particles using differential inertial focusing,” Anal. Chem. 80, 22042211 (2008).
http://dx.doi.org/10.1021/ac702283m
71.
71. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Inertial microfluidics for continuous particle filtration and extraction,” Microfluid. Nanofluid. 7, 217226 (2009).
http://dx.doi.org/10.1007/s10404-008-0377-2
72.
72. S. C. Hur, A. J. Mach, and D. Di Carlo, “High-throughput size-based rare cell enrichment using microscale vortices,” Biomicrofluidics 5, 022206 (2011).
http://dx.doi.org/10.1063/1.3576780
73.
73. D. Di Carlo, “Inertial microfluidics,” Lab Chip 9, 30383046 (2009).
http://dx.doi.org/10.1039/b912547g
74.
74. J. Takagi, M. Yamada, M. Yasuda, and M. Seki, “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab Chip 5, 778784 (2005).
http://dx.doi.org/10.1039/b501885d
75.
75. M. Yamada and M. Seki, “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab Chip 5, 12331239 (2005).
http://dx.doi.org/10.1039/b509386d
76.
76. L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous particle separation through deterministic lateral displacement,” Science 304, 987990 (2004).
http://dx.doi.org/10.1126/science.1094567
77.
77. D. W. Inglis, J. A. Davis, R. H. Austin, and J. C. Sturm, “Critical particle size for fractionation by deterministic lateral displacement,” Lab Chip 6, 655658 (2006).
http://dx.doi.org/10.1039/b515371a
78.
78. B. R. Long, M. Heller, J. P. Beech, H. Linke, H. Bruus, and J. O. Tegenfeldt, “Multidirectional sorting modes in deterministic lateral displacement devices,” Phys. Rev. E 78, 046304 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.046304
79.
79. S. Choi and J. K. Park, “Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel,” Lab Chip 7, 890897 (2007).
http://dx.doi.org/10.1039/b701227f
80.
80. S. Choi, S. Song, C. Choi, and J. K. Park, “Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis,” Anal. Chem. 81, 19641968 (2009).
http://dx.doi.org/10.1021/ac8024575
81.
81. J. S. Park, S. H. Song, and H. I. Jung, “Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels,” Lab Chip 9, 939948 (2009).
http://dx.doi.org/10.1039/b813952k
82.
82. J. S. Park and H. I. Jung, “Multiorifice flow fractionation: Continuous size-based separation of microspheres using a series of contraction/expansion microchannels,” Anal. Chem. 81, 82808288 (2009).
http://dx.doi.org/10.1021/ac9005765
83.
83. A. Karnis and S. G. Mason, “Particle motions in sheared suspensions. XIX. Viscoelastic media,” Trans. Soc. Rheol. 10, 571592 (1966).
http://dx.doi.org/10.1122/1.549066
84.
84. F. Gauthier, H. L. Goldsmith, and S. G. Mason, “Particle motions in non-Newtonian media. II. Poiseuille flow,” Trans. Soc. Rheol. 15, 297330 (1971).
http://dx.doi.org/10.1122/1.549212
85.
85. E. Bartram, H. L. Goldsmith, and S. G. Mason, “Particle motions in non-Newtonian media,” Rheol. Acta 14, 776782 (1975).
http://dx.doi.org/10.1007/BF01521406
86.
86. M. A. Tehrani, “An experimental study of particle migration in pipe flow of viscoelastic fluids,” J. Rheol. 40, 10571077 (1996).
http://dx.doi.org/10.1122/1.550773
87.
87. B. P. Ho and L. G. Leal, “Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid,” J. Fluid Mech. 76, 783 (1976).
http://dx.doi.org/10.1017/S002211207600089X
88.
88. P. Y. Huang, J. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids,” J. Fluid Mech. 343, 7394 (1997).
http://dx.doi.org/10.1017/S0022112097005764
89.
89. A. M. Ardekani, R. H. Rangel, and D. D. Joseph, “Motion of a sphere normal to a wall in a second-order fluid,” J. Fluid Mech. 587, 163172 (2007).
http://dx.doi.org/10.1017/S0022112007007549
90.
90. A. M. Ardekani, R. H. Rangel, and D. D. Joseph, “Two spheres in a free stream of a second-order fluid,” Phys. Fluids 20, 063101 (2008).
http://dx.doi.org/10.1063/1.2917976
91.
91. S. A. Dhahir and K. Walters, “On non-Newtonian flow past a cylinder in a confined flow,” J. Rheol. 33, 781804 (1989).
http://dx.doi.org/10.1122/1.550074
92.
92. P. Y. Huang and D. D. Joseph, “Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids,” J. Non-Newtonian Fluid Mech. 90, 159185 (2000).
http://dx.doi.org/10.1016/S0377-0257(99)00074-9
93.
93. R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids: Fluid Mechanics (John Wiley and Sons, Inc., New York, NY, 1987), Vol. 1.
94.
94. A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microfluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.234501
95.
95. S. Yang, S. S. Lee, S. W. Ahn, K. Kang, W. Shim, G. Lee, K. Hyun, and J. M. Kim, “Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity,” Soft Matter 8, 50115019 (2012).
http://dx.doi.org/10.1039/c2sm07469a
96.
96. G. D'Avino, P. L. Maffettone, F. Greco, and M. A. Hulsen, “Viscoelasticity-induced migration of a rigid sphere in confined shear flow,” J. Non-Newtonian Fluid Mech. 165, 466474 (2010).
http://dx.doi.org/10.1016/j.jnnfm.2010.01.024
97.
97. G. D'Avino, G. Romeo, M. M. Villone, F. Greco, P. A. Netti, and P. L. Maffettone, “Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser,” Lab Chip 12, 16381645 (2012).
http://dx.doi.org/10.1039/c2lc21154h
98.
98. J. Y. Kim, S. W. Ahn, S. S. Lee, and J. M. Kim, “Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow,” Lab Chip 12, 28072814 (2012).
http://dx.doi.org/10.1039/C2LC40147A
99.
99. S. Yang, J. Y. Kim, S. J. Lee, S. S. Lee, and J. M. Kim, “Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel,” Lab Chip 11, 266273 (2011).
http://dx.doi.org/10.1039/c0lc00102c
100.
100. J. Nam, H. Lim, D. Kim, H. Jung, and S. Shin, “Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid,” Lab Chip 12, 13471354 (2012).
http://dx.doi.org/10.1039/c2lc21304d
101.
101. A. M. Dondorp, P. A. Kager, J. Vreeken, and N. J. White, “Abnormal blood flow and red blood cell deformability in severe malaria,” Parasitol. Today 16, 228232 (2000).
http://dx.doi.org/10.1016/S0169-4758(00)01666-5
102.
102. F. C. Mokken, M. Kedaria, C. P. Henny, M. R. Hardeman, and A. W. Gelb, “The clinical importance of erythrocyte deformability, a hemorrheological parameter,” Ann. Hematol. 64, 113122 (1992).
http://dx.doi.org/10.1007/BF01697397
103.
103. S. E. Cross, Y. S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2, 780783 (2007).
http://dx.doi.org/10.1038/nnano.2007.388
104.
104. S. Suresh, “Biomechanics and biophysics of cancer cells,” Acta Mater. 55, 39894014 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.04.022
105.
105. S. K. Ballas, “Sickle cell anemia with few painful crises is characterized by decreased red cell deformability and increased number of dense cells,” Am. J. Hematol. 36, 122130 (2006).
http://dx.doi.org/10.1002/ajh.2830360211
106.
106. P. C. H. Chan and L. G. Leal, “The motion of a deformable drop in a second-order fluid,” J. Fluid Mech. 92, 131170 (1979).
http://dx.doi.org/10.1017/S0022112079000562
107.
107. F. Takemura, S. Takagi, J. Magnaudet, and Y. Matsumoto, “Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid,” J. Fluid Mech. 461, 277300 (2002).
http://dx.doi.org/10.1017/S0022112002008388
108.
108. F. Takemura and J. Magnaudet, “The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number,” J. Fluid Mech. 495, 235253 (2003).
http://dx.doi.org/10.1017/S0022112003006232
109.
109. J. Magnaudet, S. Takagi, and D. Legendre, “Drag, deformation and lateral migration of a buoyant drop moving near a wall,” J. Fluid Mech. 476, 115157 (2003).
http://dx.doi.org/10.1017/S0022112002002902
110.
110. S. K. Doddi and P. Bagchi, “Lateral migration of a capsule in a plane Poiseuille flow in a channel,” Int. J. Multiphase Flow 34, 966986 (2008).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.03.002
111.
111. S. Mortazavi and G. Tryggvason, “A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop,” J. Fluid Mech. 411, 325350 (2000).
http://dx.doi.org/10.1017/S0022112099008204
112.
112. B. Lorz, R. Simson, J. Nardi, and E. Sackmann, “Weakly adhering vesicles in shear flow: Tanktreading and anomalous lift force,” Europhys. Lett. 51, 468 (2000).
http://dx.doi.org/10.1209/epl/i2000-00517-6
113.
113. S. Sukumaran and U. Seifert, “Influence of shear flow on vesicles near a wall: A numerical study,” Phys. Rev. E 64, 011916 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.011916
114.
114. W. S. J. Uijttewaal, E. J. Nijhof, and R. M. Heethaar, “Droplet migration, deformation, and orientation in the presence of a plane wall: A numerical study compared with analytical theories,” Phys. Fluids A: Fluid Dyn. 5, 819825 (1993).
http://dx.doi.org/10.1063/1.858629
115.
115. G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, “Noninertial lateral migration of vesicles in bounded Poiseuille flow,” Phys. Fluids 20, 111702 (2008).
http://dx.doi.org/10.1063/1.3023159
116.
116. M. Abkarian and A. Viallat, “Dynamics of vesicles in a wall-bounded shear flow,” Biophys. J. 89, 10551066 (2005).
http://dx.doi.org/10.1529/biophysj.104.056036
117.
117. M. Abkarian and A. Viallat, “Vesicles and red blood cells in shear flow,” Soft Matter 4, 653657 (2008).
http://dx.doi.org/10.1039/b716612e
118.
118. U. Seifert, K. Berndl, and R. Lipowsky, “Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models,” Phys. Rev. A 44, 1182 (1991).
http://dx.doi.org/10.1103/PhysRevA.44.1182
119.
119. P. M. Vlahovska and R. S. Gracia, “Dynamics of a viscous vesicle in linear flows,” Phys. Rev. E 75, 016313 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.016313
120.
120. P. M. Vlahovska, T. Podgorski, and C. Misbah, “Vesicles and red blood cells in flow: From individual dynamics to rheology,” C. R. Phys. 10, 775789 (2009).
http://dx.doi.org/10.1016/j.crhy.2009.10.001
121.
121. A. J. Griggs, A. Z. Zinchenko, and R. H. Davis, “Low-Reynolds-number motion of a deformable drop between two parallel plane walls,” Int. J. Multiphase Flow 33, 182206 (2007).
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2006.06.012
122.
122. B. Alberts, Molecular Biology of the Cell, 4th ed. (Garland Science, New York, 2002).
123.
123. R. Dimova, K. A. Riske, S. Aranda, N. Bezlyepkina, R. L. Knorr, and R. Lipowsky, “Giant vesicles in electric fields,” Soft Matter 3, 817827 (2007).
http://dx.doi.org/10.1039/b703580b
124.
124. S. R. Keller and R. Skalak, “Motion of a tank-treading ellipsoidal particle in a shear flow,” J. Fluid Mech. 120, 2747 (1982).
http://dx.doi.org/10.1017/S0022112082002651
125.
125. P. Olla, “The lift on a tank-treading ellipsoidal cell in a shear flow,” J. Phys. II 7, 15331540 (1997).
http://dx.doi.org/10.1051/jp2:1997201
126.
126. G. Danker, P. M. Vlahovska, and C. Misbah, “Vesicles in Poiseuille flow,” Phys. Rev. Lett. 102, 148102 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.148102
127.
127. B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah, and W. Zimmermann, “Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow,” Phys. Rev. E 77, 021903 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.021903
128.
128. T. M. Geislinger, B. Eggart, S. Braunmuller, L. Schmid, and T. Franke, “Separation of blood cells using hydrodynamic lift,” Appl. Phys. Lett. 100, 183701 (2012).
http://dx.doi.org/10.1063/1.4709614
129.
129. W. R. Dean, “Fluid motion in a curved channel,” Proc. R. Soc. London, Ser. A 121, 402420 (1928).
http://dx.doi.org/10.1098/rspa.1928.0205
130.
130. S. A. Berger, L. Talbot, and L. S. Yao, “Flow in curved pipes,” Annu. Rev. Fluid Mech. 15, 461512 (1983).
http://dx.doi.org/10.1146/annurev.fl.15.010183.002333
131.
131. S. Ookawara, R. Higashi, D. Street, and K. Ogawa, “Feasibility study on concentration of slurry and classification of contained particles by microchannel,” Chem. Eng. J. 101, 171178 (2004).
http://dx.doi.org/10.1016/j.cej.2003.11.008
132.
132. T. M. Squires and S. R. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Rev. Modern Phys. 77, 977 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.977
133.
133. D. R. Gossett and D. Di Carlo, “Particle focusing mechanisms in curving confined flows,” Anal. Chem. 81, 84598465 (2009).
http://dx.doi.org/10.1021/ac901306y
134.
134. X. Mao, S. C. S. Lin, C. Dong, and T. J. Huang, “Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing,” Lab Chip 9, 15831589 (2009).
http://dx.doi.org/10.1039/b820138b
135.
135. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Continuous particle separation in spiral microchannels using Dean flows and differential migration,” Lab Chip 8, 19061914 (2008).
http://dx.doi.org/10.1039/b807107a
136.
136. A. A. S. Bhagat, S. S. Kuntaegowdanahalli, N. Kaval, C. J. Seliskar, and I. Papautsky, “Inertial microfluidics for sheath-less high-throughput flow cytometry,” Biomed. Microdevices 12, 187195 (2010).
http://dx.doi.org/10.1007/s10544-009-9374-9
137.
137. J. Wang, Y. Zhan, V. M. Ugaz, and C. Lu, “Vortex-assisted DNA delivery,” Lab Chip 10, 20572061 (2010).
http://dx.doi.org/10.1039/c004472e
138.
138. J. Zhu and X. Xuan, “Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels,” Biomicrofluidics 5, 024111 (2011).
http://dx.doi.org/10.1063/1.3599883
139.
139. E. W. M. Kemna, R. M. Schoeman, F. Wolbers, I. Vermes, D. A. Weitz, and A. van den Berg, “High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel,” Lab Chip 12, 28812887 (2012).
http://dx.doi.org/10.1039/c2lc00013j
140.
140. C. Church, J. Zhu, G. Wang, T. R. J. Tzeng, and X. Xuan, “Electrokinetic focusing and filtration of cells in a serpentine microchannel,” Biomicrofluidics 3, 044109 (2009).
http://dx.doi.org/10.1063/1.3267098
141.
141. W. C. Lee, A. A. S. Bhagat, S. Huang, K. J. Van Vliet, J. Han, and C. T. Lim, “High-throughput cell cycle synchronization using inertial forces in spiral microchannels,” Lab Chip 11, 13591367 (2011).
http://dx.doi.org/10.1039/c0lc00579g
142.
142. C. M. Lin, Y. S. Lai, H. P. Liu, C. Y. Chen, and A. M. Wo, “Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications,” Anal. Chem. 80, 89378945 (2008).
http://dx.doi.org/10.1021/ac800972t
143.
143. H. M. Hertz, “Standing-wave acoustic trap for nonintrusive positioning of microparticles,” J. Appl. Phys. 78, 48454849 (1995).
http://dx.doi.org/10.1063/1.359770
144.
144. T. M. Squires and M. Z. Bazant, “Induced-charge electro-osmosis,” J. Fluid Mech. 509, 217252 (2004).
http://dx.doi.org/10.1017/S0022112004009309
145.
145. A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, “Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis,” Phys. Rev. E 61, 40194028 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.4019
146.
146. L. Y. Yeo, D. Hou, S. Maheshswari, and H. Chang, “Electrohydrodynamic surface microvortices for mixing and particle trapping,” Appl. Phys. Lett. 88, 233512 (2006).
http://dx.doi.org/10.1063/1.2212275
147.
147. D. Hou, S. Maheshwari, and H. Chang, “Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering,” Biomicrofluidics 1, 014106 (2007).
http://dx.doi.org/10.1063/1.2710191
148.
148. S. Liu, H. Wei, S. Hwang, and H. Chang, “Dynamic particle trapping, release, and sorting by microvortices on a substrate,” Phys. Rev. E 82, 026308 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.026308
149.
149. D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9, 27382741 (2009).
http://dx.doi.org/10.1039/b903687c
150.
150. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid. 7, 727731 (2009).
http://dx.doi.org/10.1007/s10404-009-0444-3
151.
151. R. H. Liu, J. Yang, M. Z. Pindera, M. Athavale, and P. Grodzinski, “Bubble-induced acoustic micromixing,” Lab Chip 2, 151157 (2002).
http://dx.doi.org/10.1039/b201952c
152.
152. A. R. Tovar and A. P. Lee, “Lateral cavity acoustic transducer,” Lab Chip 9, 4143 (2009).
http://dx.doi.org/10.1039/b812435c
153.
153. K. Ryu, S. K. Chung, and S. K. Cho, “Micropumping by an acoustically excited oscillating bubble for automated implantable microfluidic devices,” J. Assoc. Lab Autom. 15, 163171 (2010).
http://dx.doi.org/10.1016/j.jala.2010.01.012
154.
154. Y. Xie, D. Ahmed, M. I. Lapsley, S. C. S. Lin, A. A. Nawaz, L. Wang, and T. J. Huang, “Single-shot characterization of enzymatic reaction constants Km and kcat by an acoustic-driven, bubble-based fast micromixer,” Anal. Chem. 84(17), 74957501 (2012).
http://dx.doi.org/10.1021/ac301590y
155.
155. P. Marmottant and S. Hilgenfeldt, “Controlled vesicle deformation and lysis by single oscillating bubbles,” Nature (London) 423, 153156 (2003).
http://dx.doi.org/10.1038/nature01613
156.
156. C. Wang, S. V. Jalikop, and S. Hilgenfeldt, “Size-sensitive sorting of microparticles through control of flow geometry,” Appl. Phys. Lett. 99, 034101 (2011).
http://dx.doi.org/10.1063/1.3610940
157.
157. C. Wang, S. V. Jalikop, and S. Hilgenfeldt, “Efficient manipulation of microparticles in bubble streaming flows,” Biomicrofluidics 6, 012801 (2012).
http://dx.doi.org/10.1063/1.3654949
158.
158. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: A versatile tool for lab on a chip applications,” Lab Chip 12, 42164227 (2012).
http://dx.doi.org/10.1039/c2lc40424a
159.
159. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science 315, 832835 (2007).
http://dx.doi.org/10.1126/science.1136907
160.
160. J. S. Raut, S. D. Stoyanov, C. Duggal, E. G. Pelan, L. N. Arnaudov, and V. M. Naik, “Hydrodynamic cavitation: A bottom-up approach to liquid aeration,” Soft Matter 8, 45624566 (2012).
http://dx.doi.org/10.1039/c2sm07330g
161.
161. P. Dawson, “The physics of the oscillating bubble made simple,” Eur. J. Radiol. 41, 176178 (2002).
http://dx.doi.org/10.1016/S0720-048X(02)00023-2
162.
162. W. L. Nyborg, Acoustic Streaming (Academic Press, New York, 1965), Vol. 2.
163.
163. N. Riley, “Steady streaming,” Annu. Rev. Fluid Mech. 33, 4365 (2001).
http://dx.doi.org/10.1146/annurev.fluid.33.1.43
164.
164. D. L. Miller and E. A. Neppiras, “On the oscillation mode of gas-filled micropores,” J. Acoust. Soc. Am. 77, 946 (1985).
http://dx.doi.org/10.1121/1.392062
165.
165. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992), Vol. 7.
166.
166. M. Z. Bazant, “Induced-charge electrokinetic phenomena,” in Electrokinetics and Electrohydrodynamics in Microsystems (CISM, 2011), pp. 221297.
http://dx.doi.org/10.1007/978-3-7091-0900-7_7
167.
167. K. V. Sharp, S. H. Yazdi, and S. M. Davison, “Localized flow control in microchannels using induced-charge electroosmosis near conductive obstacles,” Microfluid. Nanofluid. 10, 12571267 (2011).
http://dx.doi.org/10.1007/s10404-010-0756-3
168.
168. J. A. Levitan, S. Devasenathipathy, V. Studer, Y. Ben, T. Thorsen, T. M. Squires, and M. Z. Bazant, “Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel,” Colloids Surf., A 267, 122132 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.06.050
169.
169. S. H. Yazdi and A. M. Ardekani, “Bacterial aggregation and biofilm formation in a vortical flow,” Biomicrofluidics 6, 044114 (2012).
http://dx.doi.org/10.1063/1.4771407
170.
170. B. R. Lutz, J. Chen, and D. T. Schwartz, “Microscopic steady streaming eddies created around short cylinders in a channel: Flow visualization and stokes layer scaling,” Phys. Fluids 17, 023601 (2005).
http://dx.doi.org/10.1063/1.1824137
171.
171. B. R. Lutz, J. Chen, and D. T. Schwartz, “Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies,” Anal. Chem. 78, 54295435 (2006).
http://dx.doi.org/10.1021/ac060555y
172.
172. V. H. Lieu, T. A. House, and D. T. Schwartz, “Hydrodynamic tweezers: Impact of design geometry on flow and microparticle trapping,” Anal. Chem. 84, 19631968 (2012).
http://dx.doi.org/10.1021/ac203002z
173.
173. S. Ahuja, Chiral Separations: Applications and Technology (American Chemical Society, Washington, DC, 1997).
174.
174. P. Chen and C. H. Chao, “Lift forces of screws in shear flows,” Phys. Fluids 19, 017108 (2007).
http://dx.doi.org/10.1063/1.2428249
175.
175. M. Makino, L. Arai, and M. Doi, “Shear migration of chiral particle in parallel-disk,” J. Phys. Soc. Jpn. 77, 064404 (2008).
http://dx.doi.org/10.1143/JPSJ.77.064404
176.
176. Marcos, H. C. Fu, T. R. Powers, and R. Stocker, “Separation of microscale chiral objects by shear flow,” Phys. Rev. Lett. 102, 158103 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.158103
177.
177. W. M. Durham, J. O. Kessler, and R. Stocker, “Disruption of vertical motility by shear triggers formation of thin phytoplankton layers,” Science 323, 10671070 (2009).
http://dx.doi.org/10.1126/science.1167334
178.
178. N. Hashemi, J. S. Erickson, J. P. Golden, and F. S. Ligler, “Optofluidic characterization of marine algae using a microflow cytometer,” Biomicrofluidics 5, 032009 (2011).
http://dx.doi.org/10.1063/1.3608136
179.
179. A. M. Ardekani and E. Gore, “Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid,” Phys. Rev. E 85, 056309 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.056309
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4799787
Loading
/content/aip/journal/bmf/7/2/10.1063/1.4799787
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/bmf/7/2/10.1063/1.4799787
2013-04-05
2014-10-30

Abstract

Focusing and sorting cells and particles utilizing microfluidic phenomena have been flourishing areas of development in recent years. These processes are largely beneficial in biomedical applications and fundamental studies of cell biology as they provide cost-effective and point-of-care miniaturized diagnostic devices and rare cell enrichment techniques. Due to inherent problems of isolation methods based on the biomarkers and antigens, separation approaches exploiting physical characteristics of cells of interest, such as size, deformability, and electric and magnetic properties, have gained currency in many medical assays. Here, we present an overview of the cell/particle sorting techniques by harnessing intrinsic hydrodynamic effects in microchannels. Our emphasis is on the underlying fluid dynamical mechanisms causing cross stream migration of objects in shear and vortical flows. We also highlight the advantages and drawbacks of each method in terms of throughput, separation efficiency, and cell viability. Finally, we discuss the future research areas for extending the scope of hydrodynamic mechanisms and exploring new physical directions for microfluidic applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/bmf/7/2/1.4799787.html;jsessionid=2r1q9olmuibri.x-aip-live-03?itemId=/content/aip/journal/bmf/7/2/10.1063/1.4799787&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/bmf
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hydrodynamic mechanisms of cell and particle trapping in microfluidics
http://aip.metastore.ingenta.com/content/aip/journal/bmf/7/2/10.1063/1.4799787
10.1063/1.4799787
SEARCH_EXPAND_ITEM